

Amoco documentation

Amoco is a python (>=3.7) package dedicated to the static symbolic
analysis of binary programs.

It features:

	a generic framework for decoding instructions, developed to reduce
the time needed to implement support for new architectures.
For example the decoder for most IA32 instructions (general purpose)
fits in less than 800 lines of Python.
The full SPARCv8 RISC decoder (or the ARM THUMB-1 set as well) fits
in less than 350 lines. The ARMv8 instruction set decoder is less than
650 lines.

	a symbolic algebra module which allows to describe the semantics of
every instructions and compute a functional representation of instruction
blocks.

	a generic execution model wich provides an abstract memory model to deal
with concrete or symbolic values transparently, and other system-dependent
features.

	various classes implementing usual disassembly techniques like linear sweep,
recursive traversal, or more elaborated techniques like path-predicate
which relies on SAT/SMT solvers to proceed with discovering the control
flow graph or even to implement techniques like DARE (Directed Automated
Random Exploration).

	various generic helpers and arch-dependent pretty printers to allow
custom look-and-feel configurations (think AT&T vs. Intel syntax,
absolute vs. relative offsets, decimal or hex immediates, etc).

	a persistent database facility that allows to compare discovered graphs
with other previously analysed piece of codes.

	a graphical user interface that can either be run as a standalone client or
as an IDA plugin.

User Documentation

	Installation

	Getting started

	Examples

	Configuration

	Advanced features

Application Programming Interface

	Overview

	The architecture package

	The computer algebra system package

	The system package

	The static analysis package

	The user interface package

	code.py

	cfg.py

	db.py

	config.py

	logger.py

Indices and tables

	Index

	Module Index

	Search Page

Installation

Amoco is a pure python package which depends on the following packages:

	grandalf [https://github.com/bdcht/grandalf] used for building, walking and rendering Control Flow Graphs

	crysp [https://github.com/bdcht/crysp] used by the generic intruction decoder (arch.core)

	traitlets [https://pypi.org/project/traitlets/] used for managing the configuration

	pyparsing [https://pypi.org/project/pyparsing/] used for parsing instruction specifications

Recommended optional packages are:

	z3 [http://z3.codeplex.com/] used to simplify expressions and solve constraints

	pygments [http://pygments.org/] used for pretty printing of assembly code and expressions

	ccrawl [https://github.com/bdcht/ccrawl] used to define and import data structures

Some optional features related to UI and persistence require:

	click [https://click.palletsprojects.com/] used to define amoco command-line app

	blessed [https://github.com/jquast/blessed] used for terminal based debugger frontend

	tqdm [https://github.com/tqdm/tqdm] used for terminal based debugger frontend

	ply [http://www.dabeaz.com/ply/] for parsing GNU as files

	sqlalchemy [http://www.sqlalchemy.org/] for persistence of amoco objects in a database

	pyside2 [https://wiki.qt.io/Qt_for_Python] for the Qt-based graphical user interface

Installation is straightforward for most packages using pip [https://pypi.python.org/pypi/pip].

The z3 [http://z3.codeplex.com/] SMT solver is highly recommended (do pip install z3-solver).
The pygments [http://pygments.org/] package is also recommended for pretty printing, and
sqlalchemy [http://www.sqlalchemy.org/] is needed if you want to store analysis results and objects.

If you want to use the graphical interface you will need all packages.

Getting started

This part of the documentation is intended for reversers or pentesters
who want to get valuable informations about a binary blob without writting
complicated python scripts.
We give here a quick introduction to amoco without covering any of the
implementation details.

Content

	Loading binary data

	Decoding blocks of instructions

	Symbolic representations of blocks

	Starting some analysis

Loading binary data

The recommended way to load binary data is to use the
load_program
function, providing an input filename or a bytestring.
For example, from directory amoco/tests, do:

In [1]: import amoco
In [2]: p = amoco.load_program(u'samples/x86/flow.elf')
In [3]: print(p)
<Task amoco.system.linux32.x86 'samples/x86/flow.elf'>

In [4]: print(p.bin.Ehdr)
[Ehdr]
e_ident :[IDENT]
 ELFMAG0 :127
 ELFMAG :b'ELF'
 EI_CLASS :ELFCLASS32
 EI_DATA :ELFDATA2LSB
 EI_VERSION :1
 EI_OSABI :ELFOSABI_NONE
 EI_ABIVERSION:0
 unused :(0, 0, 0, 0, 0, 0, 0)
e_type :ET_EXEC
e_machine :EM_386
e_version :EV_CURRENT
e_entry :0x8048380
e_phoff :52
e_shoff :4416
e_flags :0x0
e_ehsize :52
e_phentsize:32
e_phnum :9
e_shentsize:40
e_shnum :30
e_shstrndx :27

If you have the click_ python package installed, you can also
rely on the amoco shell command and simply do:

% amoco load samples/x86/flow.elf

If the binary data uses a registered executable format
(currently system.pe, system.elf, system.macho
or an HEX/SREC format in system.utils) and targets a
supported plateform (see system and
arch packages), the returned object is
an abstraction of the memory mapped program:

In [5]: print(p.state)
eip <- { | [0:32]->0x8048380 | }
ebp <- { | [0:32]->0x0 | }
eax <- { | [0:32]->0x0 | }
ebx <- { | [0:32]->0x0 | }
ecx <- { | [0:32]->0x0 | }
edx <- { | [0:32]->0x0 | }
esi <- { | [0:32]->0x0 | }
edi <- { | [0:32]->0x0 | }
esp <- { | [0:32]->0x7ffff000 | }

In [6]: print(p.state.mmap)
<MemoryZone rel=None :
 <mo [08048000,08049000] data:b'\x7fELF\x01\x01\x01\x00\x00\x0...'>
 <mo [08049f14,08049ff0] data:b'\xff\xff\xff\xff\x00\x00\x00\x...'>
 <mo [08049ff0,08049ff4] data:@__gmon_start__>
 <mo [08049ff4,0804a000] data:b'(\x9f\x04\x08\x00\x00\x00\x00\...'>
 <mo [0804a000,0804a004] data:@__stack_chk_fail>
 <mo [0804a004,0804a008] data:@malloc>
 <mo [0804a008,0804a00c] data:@__gmon_start__>
 <mo [0804a00c,0804a010] data:@__libc_start_main>
 <mo [0804a010,0804af14] data:b'\x00\x00\x00\x00\x00\x00\x00\x...'>
 <mo [7fffd000,7ffff000] data:b'\x00\x00\x00\x00\x00\x00\x00\x...'>>

(other more specific executable formats are supported
but they need to be loaded manually.)
Also note that it is possible to provide a raw bytes string as input and
then manually load the architecture:

In [1]: import amoco
In [2]: shellcode = (b"\xeb\x16\x5e\x31\xd2\x52\x56\x89\xe1\x89\xf3\x31\xc0\xb0\x0b\xcd"
 b"\x80\x31\xdb\x31\xc0\x40\xcd\x80\xe8\xe5\xff\xff\xff\x2f\x62\x69"
 b"\x6e\x2f\x73\x68")
In [3]: p = amoco.load_program(shellcode)
[WARNING] amoco.system.core : unknown format
[WARNING] amoco.system.raw : a cpu module must be imported

In [4]: from amoco.arch.x86 import cpu_x86
In [5]: p.cpu = cpu_x86

In [6]: print(p)
<RawExec - '(sc-eb165e31...)'>

In [7]: print(p.state.mmap)
<MemoryZone rel=None :
 <mo [00000000,00000024] data:'\xeb\x16^1\xd2RV\x89\xe1\x89\xf...'>>

The shellcode is mapped at address 0 by default, but can be relocated:

In [8]: p.relocate(0x4000)
In [9]: print(p.state.mmap)
<MemoryZone rel=None :
 <mo [00004000,00004024] data:'\xeb\x16^1\xd2RV\x89\xe1\x89\xf...'>>

Decoding blocks of instructions

Decoding some bytes as an arch.core.instruction needs only to load the desired cpu module, for
example:

In [10]: cpu_x86.disassemble(b'\xeb\x16')
Out[10]: <amoco.arch.x86.spec_ia32 JMP (length=2 type=2)>
In [11]: print(_)
jmp .+22

If a mapped binary program has been instanciated, we can start disassembling instructions
or data located at some virtual address:

In [12]: print(p.read_instruction(0x4000))
jmp *0x4018
In [13]: p.read_data(0x4000,2)
Out[13]: ['\xeb\x16']

Now, rather than manually adjusting the address to fetch the next instruction, we
can use any of the code analysis strategies implemented in amoco to disassemble
basic blocks directly:

% amoco load samples/x86/flow.elf
[...]
In [3]: z = amoco.sa.lsweep(p)

In [4]: z.getblock(0x8048380)
Out[4]: <block object (0x8048380-0x80483a1) with 13 instructions>

In [5]: b=_
In [6]: print(b.view)
─────────── block 0x8048380 ──────────────────────────
0x8048380 '31ed' xor ebp, ebp
0x8048382 '5e' pop esi
0x8048383 '89e1' mov ecx, esp
0x8048385 '83e4f0' and esp, 0xfffffff0
0x8048388 '50' push eax
0x8048389 '54' push esp
0x804838a '52' push edx
0x804838b '6810860408' push 0x8048610
0x8048390 '68a0850408' push 0x80485a0
0x8048395 '51' push ecx
0x8048396 '56' push esi
0x8048397 '68fd840408' push 0x80484fd
0x804839c 'e8cfffffff' call *0x8048370
──

Note that a block view will show non-transformed instructions’ operands
(appart from PC-relative branch offsets which are shown as absolute addresses.)
Block views can be enhanced by several analyses that will possibly add symbols related to addresses
(provided by the program’s symbol table) or more semantic-related information. These views
are usually available only through the higher level task view object and add various
comment tokens to instruction lines. For example:

In [7]: print(p.view.codeblock(b))
───────── codeblock 0x8048380 ──
0x8048380.text '31ed' xor ebp, ebp
0x8048382.text '5e' pop esi
0x8048383.text '89e1' mov ecx, esp
0x8048385.text '83e4f0' and esp, 0xfffffff0
0x8048388.text '50' push eax
0x8048389.text '54' push esp
0x804838a.text '52' push edx
0x804838b.text '6810860408' push 0x8048610<__libc_csu_fini>
0x8048390.text '68a0850408' push 0x80485a0<__libc_csu_init>
0x8048395.text '51' push ecx
0x8048396.text '56' push esi
0x8048397.text '68fd840408' push 0x80484fd<main>
0x804839c.text 'e8cfffffff' call 0x8048370<__libc_start_main>
──

Symbolic representations of blocks

A block object provides instructions of the program located at some address in memory.
A node object takes a block and
allows to get a symbolic functional representation of what this block sequence
of instructions is doing:

In [8]: n = amoco.cfg.node(b)
In [8]: print(n.map.view)
eip ⇽ (eip+-0x10)
eflags:
 │ cf ⇽ 0x0
 │ pf ⇽ (0x6996>>(esp+0x4)[4:8])[0:1]
 │ af ⇽ af
 │ zf ⇽ ({[0: 4] -> 0x0, [4:32] -> (esp+0x4)[4:32]}==0x0)
 │ sf ⇽ ({[0: 4] -> 0x0, [4:32] -> (esp+0x4)[4:32]}<0x0)
 │ tf ⇽ tf
 │ df ⇽ df
 │ of ⇽ 0x0
ebp ⇽ 0x0
esp ⇽ ({[0: 4] -> 0x0, [4:32] -> (esp+0x4)[4:32]}-0x24)
esi ⇽ M32(esp)
ecx ⇽ (esp+0x4)
({ | [0:4]->0x0 | [4:32]->(esp+0x4)[4:32] | }-4) ⇽ eax
({ | [0:4]->0x0 | [4:32]->(esp+0x4)[4:32] | }-8) ⇽ ({[0: 4] -> 0x0, [4:32] -> (esp+0x4)[4:32]}-0x4)
({ | [0:4]->0x0 | [4:32]->(esp+0x4)[4:32] | }-12) ⇽ edx
({ | [0:4]->0x0 | [4:32]->(esp+0x4)[4:32] | }-16) ⇽ 0x8048610
({ | [0:4]->0x0 | [4:32]->(esp+0x4)[4:32] | }-20) ⇽ 0x80485a0
({ | [0:4]->0x0 | [4:32]->(esp+0x4)[4:32] | }-24) ⇽ (esp+0x4)
({ | [0:4]->0x0 | [4:32]->(esp+0x4)[4:32] | }-28) ⇽ M32(esp)
({ | [0:4]->0x0 | [4:32]->(esp+0x4)[4:32] | }-32) ⇽ 0x80484fd
({ | [0:4]->0x0 | [4:32]->(esp+0x4)[4:32] | }-36) ⇽ (eip+0x21)

Here we are with the map of the block.
Now what this mapper object says is for example that once the block
is executed esi register will be set to the 32 bits value pointed by esp, that the carry flag will be 0, or
that the top of the stack will hold value eip+0x21.
Rather than extracting the entire view of the mapper we can query any expression out if it:

In [9]: print(n.map(p.cpu.ecx))
(esp+0x4)

There are some caveats when it comes to query memory expressions but we will leave this
for later (see cas.mapper.mapper).

The n.map object also provides a better way to see how the memory is modified by the block:

In [10]: print(n.map.mmap)
<MemoryZone rel=None :>
<MemoryZone rel={ | [0:4]->0x0 | [4:32]->(esp+0x4)[4:32] | } :
 <mo [-0000024,-0000020] data:(eip+0x21)>
 <mo [-0000020,-000001c] data:b'\xfd\x84\x04\x08'>
 <mo [-000001c,-0000018] data:M32(esp)>
 <mo [-0000018,-0000014] data:(esp+0x4)>
 <mo [-0000014,-0000010] data:b'\xa0\x85\x04\x08'>
 <mo [-0000010,-000000c] data:b'\x10\x86\x04\x08'>
 <mo [-000000c,-0000008] data:edx>
 <mo [-0000008,-0000004] data:({ | [0:4]->0x0 | [4:32]->(esp+0...>
 <mo [-0000004,00000000] data:eax>>

The cas.mapper.mapper class is an essential part of amoco that captures the semantics
of the block by interpreting its’ instructions in a symbolic way. Note that it takes no input state
or whatever but just expresses what the block would do independently of what has been done
before and even where the block is actually located.

For any mapper object, we can get the lists of input and output expressions, and replace
inputs by any chosen expression:

In [11]: for x in set(n.map.inputs()): print(x)
esp
eip
M32(esp)

In [12]: m = n.map.use(eip=0x8048380, esp=0x7fcfffff)
In [13]: print(m.view)
eip <- 0x8048370
eflags:
| cf <- 0x0
| sf <- 0x0
| tf <- tf
| zf <- 0x0
| pf <- 0x0
| of <- 0x0
| df <- df
| af <- af
ebp <- 0x0
esp <- 0x7fcfffdc
esi <- M32(0x7fcfffff)
ecx <- 0x7fd00003
(0x7fd00000-4) <- eax
(0x7fd00000-8) <- 0x7fcffffc
(0x7fd00000-12) <- edx
(0x7fd00000-16) <- 0x8048610
(0x7fd00000-20) <- 0x80485a0
(0x7fd00000-24) <- 0x7fd00003
(0x7fd00000-28) <- M32(0x7fcfffff)
(0x7fd00000-32) <- 0x80484fd
(0x7fd00000-36) <- 0x80483a1

Its fine to disassemble a block at some address and get some symbolic representation of it,
but we are still far from getting the picture of the entire program.
In order to reason later about execution paths, we need a way to chain block mappers.
This is provided by the mapper’s shifts operators:

In [14]: mm = amoco.cas.mapper.mapper()
In [15]: amoco.conf.Cas.noaliasing = True
In [16]: mm[p.cpu.eip] = p.cpu.mem(p.cpu.esp+4,32)
In [17]: print((n.map>>mm)(p.cpu.eip))
0x80484fd

Here, taking a new mapper as if it came either from a block or a stub, and assuming
that there is no memory aliasing, the sequential execution of n.map followed by mm
would branch to address 0x80484fd (<main>).

Starting some analysis

Important note:

	*** The merge with emul branch has broken the static-analysis module.

	This is going to be fixed only once the merge is fully integrated ***

Examples

Configuration

Advanced features

Overview

Amoco is composed of 5 sub-packages

	arch, deals with
CPU architecures’ to provide instructions disassemblers, and
instructions’ semantics for several CPUs, microcontrollers or
“virtual machines”:

	x86, x64

	armv7, armv8 (aarch64)

	sparc (v8)

	MIPS (R3000)

	riscv

	msp430

	avr

	pic/F46K22

	v850

	sh2, sh4

	z80

	BPF/eBPF (vm)

	Dwarf (vm)

	cas, implements the computer algebra system to
provide operations and mappings with symbolic expressions.
It allows to represent architectures’ registers values either
as concrete or symbolic values,
and to describe instructions’ semantics as a map of expressions
to registers or memory addresses. If z3 is installed, boolean expressions
formulas can be translated to z3 bitvectors and checked by its solver.
If satisfiable, a z3 model can be translated back into a
:class:̀`mapper` instance (with amoco expressions.)

	system, implements all system features like
an abstract memory suited for symbolic expressions, as well as
support for executable formats (ELF,PE,Mach-O,…) and their loaders
to provide an abstraction of a “task” (a memory-mapped binary exectuable.)

	sa implements various static analysis methods to
recover and build the control flow graph of functions.

	ui deals with how instructions and expressions are displayed
either in a terminal or in a graphical user interface.

Modules code and cfg
provide high-level abstractions of basic blocks, functions, and
control flow graphs.
Module config, logger, and signals
provide the global configuration, logging and signaling facilities
to all other modules.

The architecture package

Supported CPU architectures are implemented in this package as subpackages and all
use the arch.core generic classes. The interface to a CPU used by
system classes is implemented as a cpu_XXX.py
module usually in the architecture’s subpackage.

This CPU module will:

	provide the CPU environment (registers and other internals)

	provide an instance of arch.core.disassembler class, which requires to:

	define an instruction class based on arch.core.instruction

	define the arch.core.ispec of every instruction for the generic decoder,

	and define the semantics of every instruction with cas.expressions.

	optionnally define the output assembly format, and the GNU as (or any other)
assembly parser.

	optionnally define the function PC() that allows generic analysis to
which register represents the instructions’ pointer.

A simple example is provided by the arch.arm.v8 architecture which implements
a model of ARM AArch64:
The interface CPU module is arch.arm.cpu_armv8,
which imports everything from the arch.arm.v8 subpackage.

Adding support for a new cpu module

The cpu environment

It all starts with the definition of the cpu environment in a dedicated module.
This module defines registers as instances of cas.expressions.reg,
and associated register slices with cas.expressions.slc if necessary.
For example, x86 register eax and its slices are defined in arch.x86.env as:

eax = reg("eax",32)
ax = slc(eax, 0, 16, "ax")
al = slc(eax, 0, 8 , "al")
ah = slc(eax, 8, 8 , "ah")

In order to improve code analysis and views,
some registers should be bound to their special cas.expressions.regtype,
using one of the dedicated callable or context manager.
For example, the stack pointer should be bound to regtype 'STACK' using:

esp = is_reg_stack(reg('esp',32))

or alternatively using a context manager:

with is_reg_stack:
 esp = reg('esp',32)

Defined regtypes are:

	cas.expressions.is_reg_pc

	cas.expressions.is_reg_flags

	cas.expressions.is_reg_stack

	cas.expressions.is_reg_other

Once all needed registers are defined, it is recommended to define also an
ordered list called registers which will be used by emulator instances
for registers views.

Finally, the cpu environment sometimes also needs to define some
internal parameters that change the way instructions are decoded or the
memory endianness. For example, the arch.arm.v7.env module defines
internals for isetstate to change the instruction set from ARM to
Thumb, and endianstate to change endianness.
These internal parameters differ from regular registers by the fact
that they are not defined as expressions and thus cannot be symbolic.

Instructions specifications

The instructions’ specifications are then defined in a module as well.
An instruction’s specification is an instance of arch.core.ispec
that decorates a function which performs setup of an instruction’s instance.
The specification describes how the instruction is decoded out of bytes in
a way that allows the decorated function to setup instruction’s operands and
any other characteristics from the decoded values. This description allows
to follow CPU datasheet’s instructions manual very closely. Moreover, thanks
to how decorator work, several specs can share the same setup function.
For example, we have in the MIPS R3000 instructions’ spec module:

@ispec("32<[001100 rs(5) rt(5) imm(16)]", mnemonic="ANDI")
@ispec("32<[001101 rs(5) rt(5) imm(16)]", mnemonic="ORI")
@ispec("32<[001110 rs(5) rt(5) imm(16)]", mnemonic="XORI")
def mips1_dri(obj, rs, rt, imm):
 src1 = env.R[rs]
 imm = env.cst(imm, 32)
 dst = env.R[rt]
 obj.operands = [dst, src1, imm]
 obj.type = type_data_processing

Here, obj is an instruction instanciated by the disassembler, if decoded
bytes matches one of these spec definitions. In such case, the setup function
is called with arguments rs, rt and imm being ints decoded from the
corresponding bits (see arch.core.ispec below.)
Any instruction setup should define at least an obj.operands list and
should indicate one of the following obj.type:

	type_data_processing, which are well-defined instructions,

	type_control_flow, which mark default ending of assembly blocks,

	type_cpu_state, which may change the cpu internal registers,

	type_system, which have usually no impact on code semantics,

	type_other

The cpu disassembler

When the specification module is done, the cpu disassembler can be instanciated.
First a new local instruction class should be derived from the generic
arch.core.instruction with:

from amoco.arch.core import instruction
instruction_X = type("instruction_X", (instruction,), {})

Then, a disassembler instance is obtained with:

from amoco.arch.core import disassembler
from amoco.arch.X import spec_X, spec_thumb
disassemble = disassembler([spec_X], iclass=instruction_X)

The first argument is the list of available specifications. Most architectures
have only one mode but some like ARM can switch from a default mode (ARM) to
an alternate mode like Thumb (see class definition mode argument.)
The second is our new instruction class.
By default, disassemblers will fetch instructions in little-endian, but the
endian parameter allows to fetch in big-endian. For example the ARMv7
architecture’s disassembler is:

mode = lambda: internals["isetstate"]
endian = lambda: 1 if internals["ibigend"] == 0 else -1
disassemble = disassembler([spec_armv7, spec_thumb],
 instruction_armv7,
 mode,
 endian)

which allows the semantics to possibly change both the mode and the
instructions’ endianness dynamically.

Instructions semantics

An instruction’s semantics is a function associated to the instruction’s
mnemonic which operates on a cas.mapper.mapper object.
The function’s name should be “i_XXX” for mnemonic “XXX”.
The mapper argument enables transitions from a state to another state.
For example, the semantics of all MIPS R3000 AND instructions is:

@__npc
def i_AND(ins, fmap):
 dst, src1, src2 = ins.operands
 if dst is not zero:
 fmap[dst] = fmap(src1&src2)

The first argument is the disassembled instruction object and the
second argument is the mapper (i.e. the state).
We simply create local variables from the operands list and then
update the state according to these operands:
Thus, the mapper is modified by
setting the first operand expression to the mapper’s evaluation
of the cas.expressions.op formed by src1 & src2.

Of course, since we want symbolic semantics these functions might
end-up being quite complex especially for conditional stuff.
For example, like in the case of this weird
unaligned load word MIPS R3000 instruction:

@__npc
def i_LWL(ins, fmap):
 dst, base, src = ins.operands
 addr = base+src
 if dst is not zero:
 fmap[dst[24:32]] = fmap(mem(addr,8))
 cond1 = (addr%4)!=0
 fmap[dst[16:24]] = fmap(tst(cond1,mem(addr-1,8),dst[16:24]))
 addr = addr - 1
 cond2 = cond1 & ((addr%4)!=0)
 fmap[dst[8:16]] = fmap(tst(cond2,mem(addr-1,8),dst[8:16]))
 fmap[dst] = fmap[dst].simplify()

Here, the number of bytes read from memory depends on the word-alignement
of the address value. This instruction is thus normally
coupled with a LWR which performs the read from memory of the rest of
bytes accross the word-alignment.
In concrete semantics, this is quite simple to write since address
alignment is always computable and thus 3 cases are possible.
In symbolic semantics, things are more tricky since address is
symbolic and thus the resulting writeback to dst register
is a symbolic expression that must take into account 3 cases at
once.

Updating the cpu instruction pointer

Now, instruction’s semantics must also update the cpu PC().
In the MIPS case, this is performed by using
the __npc decorator role which updates pc and npc as well
to handle delay slot cases.
Architectures without delay slots can just advance their program’s
counter by the length of the instruction. Architectures with delay
slots can always handle delayed branches by relying on intermediate
(hidden) program counters. This is the case for arch.sparc and
arch.MIPS where __npc does:

pc <- npc
npc <- npc+4

and since branch instructions have an effect on npc
once they have been processed, the next instruction to execute
(the one located at pc,) is still just after the branch instruction.

However, special care must be taken to avoid pitfalls…
A common mistake is to believe that the delay slot instruction
is executed before the branch instruction as if the two
instructions were simply swapped. This is not true.
The branch effectively occurs after, but its operands are
still evaluated before the delay slot has had time to execute!
For example the MIPS R3000 sequence:

liu t7, 0x5
liu t6, 0x2
bne t7, t6, *somewhere
addiu t7, t7, -0x3

will lead to a branch not taken. See pipelining discussion
below for details…

A Note on cpu pipelining and cycle-accurate emulation

For most architectures, the instruction parallelism introduced
by the underlying pipeline does not interfer with the semantics.
What this means is that for example,
assuming R1=0, R2=1, R3=1 the generic case of:

OR R1, R2, R3
ADD R4, R1, 1

should obviously lead to R4=2 anyways, because pipelining is
implemented to improve performance but shouldn’t have any impact
on semantics.
Hence, we can always emulate instructions as if
no parallelism existed. Right ? Well, not exactly…

All pipelines have pipeline hazard, ie. situations
that could lead to undefined behaviors if not handled correctly.
In our example above, the R1 register is really updated after
the ALU has performed its operation on R2 and R3 values.
Meanwhile, the ADD instruction wants to read R1 value as soon
as the instruction is decoded (after it was fetched,)
and would consequently read its value before it is updated.
Thus, pipelines have internal mechanism to detect these kind of situations
and either stall the pipeline (wait for R1 to be written back before
being used) or forward things back to other stages as soon as possible.
In this case, the ALU forwards its result immediately to back to
the ALU entry multiplexer before being updated in R1 later.

Unfortunately, some old architectures like MIPS[#]_ R3000 handled only
a limited set of these pipeline hazard and heavily relied on
the compiler to avoid some instructions’ flows
(usually by inserting nops.) In MIPS R3000 architecture,
the above case is handled correctly unless a load/store is involved
like in:

lbu v0, 0x1(a1)
nop
sll v0, v0, 0x8

Here, the compiler has inserted a nop to ensure that the loaded
byte has been fetched and can be forwarded to the ALU for sll.
Hence, as long as we emulate code produced by compliant compilers,
we still can ignore the underlying pipeline operations. But this
is not true anymore in the general cases.
Since most of the time we can’t make this assumption, instructions
can’t formally be emulated as if no parallelism existed.
If we ever have MIPS R3000 code with:

lbu v0, 0x1(a1)
sll v0, v0, 0x8

then the resulting mapper is not v0 <- mem(a1+0x1,8)<<8 but rather
something that highly depends on the involved pipeline interlocking
mechanism, most likely v0 <- v0<<8.

Like for delay slots of branch instructions that can be handled with
an additional npc register, we can always simulate the pipeline
delay by introducing a kind of hidden “register”.
In amoco the mapper has an internal delayed attribute that allows
explict delayed updates.
(these updates are triggered by explicit calls to
mapper.update_delayed(), usually right in the middle of
every instructions, as if the result of the delayed load was forwarded
to the current ALU stage.)

Instructions format

Now that instructions specifications and semantics are defined, it is
recommended to define at least one formatter to print
instructions according to the CPU’s Instruction Set Assembly manual.
Available formatters for a CPU ISA are instances of the
arch.core.Formatter class. These formatters are initiated from
a dict object that maps instructions’ mnemonic or setup function name
to iterable formatting functions operating on the instruction object.
For example:

format_default = (mnemo, opers)

MIPS_full_formats = {
 "mips1_loadstore": (mnemo, opers_mem),
 "mips1_jump_abs": (mnemo, opers),
 "mips1_jump_rel": (mnemo, opers_rel),
 "mips1_branch": (mnemo, opers_adr),
}

MIPS_full = Formatter(MIPS_full_formats)
MIPS_full.default = format_default

Here, the available format is MIPS_full, instanciated from the
MIPS_full_formats dict which maps spec setup functions to their
corresponding formatting tuples.
Functions mnemo, and opers take the instruction and return
a Pygments-compatible list of tokens if support for pretty-printing is
implemented, or simply a string. When an instruction is printed, the
formatter starts by matching its mnemonic or its setup function, or
takes the default formatting iterable, and then joins all
outputs from the iterables.

The cpu module

Finally, the cpu module can be fully created. This module
should import all from the architecture’s environment and define
its disassembler as shown above.

The semantics is associated to the instruction class with the
arch.core.instruction.set_uarch(dict)() which takes a mapping
from mnemonics to the corresponding instruction semantics function.
Thus, in most cpu modules this binding is done with:

from .asm import *
uarch = dict(filter(lambda kv: kv[0].startswith("i_"), locals().items()))
instruction_X.set_uarch(uarch)

The chosen formatter is bound to the instruction class with:

from .formats import X_full
instruction_X.set_formatter(X_full)

(Eventually, if not already defined in the environment,
the PC() function is defined to return the instruction’s pointer.)

Note that whenever a disassembler is available, the entire
architecture ISA decision tree can be displayed with:

>>> from amoco.ui.views import archView
>>> from amoco.arch.mips.cpu_r3000LE import disassemble
>>> print(archView(disassemble))
─[& f0000000 == 0]
 │─[& fc000000 == 0]
 │ │─[& fc00003f == 8]
 │ │ │─JR : 32<[000000 rs(5) 00000 00000 00000 001000]
 │ │─[& fc00003f == 12]
 │ │ │─MFLO : 32<[000000 00000 00000 rd(5) 00000 010010]
 │ │─[& fc00003f == 10]
 │ │ │─MFHI : 32<[000000 00000 00000 rd(5) 00000 010000]
 │ │─[& fc00003f == 13]
 │ │ │─MTLO : 32<[000000 rs(5) 00000 00000 00000 010011]
 │ │─[& fc00003f == 11]
 │ │ │─MTHI : 32<[000000 rs(5) 00000 00000 00000 010001]
 │ │─[& fc00003f == 19]
 │ │ │─MULTU : 32<[000000 rs(5) rt(5) 00000 00000 011001]
 │ │─[& fc00003f == 18]
 │ │ │─MULT : 32<[000000 rs(5) rt(5) 00000 00000 011000]
 │ │─[& fc00003f == 1b]
 │ │ │─DIVU : 32<[000000 rs(5) rt(5) 00000 00000 011011]
 │ │─[& fc00003f == 1a]
 │ │ │─DIV : 32<[000000 rs(5) rt(5) 00000 00000 011010]
 │ │─[& fc00003f == 9]
 │ │ │─JALR : 32<[000000 rs(5) 00000 rd(5) 00000 001001]
 │ │─[& fc00003f == 2b]
 │ │ │─SLTU : 32<[000000 rs(5) rt(5) rd(5) 00000 101011]
 │ │─[& fc00003f == 2a]
 │ │ │─SLT : 32<[000000 rs(5) rt(5) rd(5) 00000 101010]
 │ │─[& fc00003f == 6]
 │ │ │─SRLV : 32<[000000 rs(5) rt(5) rd(5) 00000 000110]
 │ │─[& fc00003f == 7]
 │ │ │─SRAV : 32<[000000 rs(5) rt(5) rd(5) 00000 000111]
 │ │─[& fc00003f == 4]
 │ │ │─SLLV : 32<[000000 rs(5) rt(5) rd(5) 00000 000100]
 │ │─[& fc00003f == 26]
 │ │ │─XOR : 32<[000000 rs(5) rt(5) rd(5) 00000 100110]
 │ │─[& fc00003f == 25]
 │ │ │─OR : 32<[000000 rs(5) rt(5) rd(5) 00000 100101]
 │ │─[& fc00003f == 27]
 │ │ │─NOR : 32<[000000 rs(5) rt(5) rd(5) 00000 100111]
 │ │─[& fc00003f == 24]
 │ │ │─AND : 32<[000000 rs(5) rt(5) rd(5) 00000 100100]
 │ │─[& fc00003f == 23]
 │ │ │─SUBU : 32<[000000 rs(5) rt(5) rd(5) 00000 100011]
 │ │─[& fc00003f == 21]
 │ │ │─ADDU : 32<[000000 rs(5) rt(5) rd(5) 00000 100001]
 │ │─[& fc00003f == 22]
 │ │ │─SUB : 32<[000000 rs(5) rt(5) rd(5) 00000 100010]
 │ │─[& fc00003f == 20]
 │ │ │─ADD : 32<[000000 rs(5) rt(5) rd(5) 00000 100000]
 │ │─[& fc00003f == 2]
 │ │ │─SRL : 32<[000000 00000 rt(5) rd(5) sa(5) 000010]
 │ │─[& fc00003f == 3]
 │ │ │─SRA : 32<[000000 00000 rt(5) rd(5) sa(5) 000011]
 │ │─[& fc00003f == 0]
 │ │ │─SLL : 32<[000000 00000 rt(5) rd(5) sa(5) 000000]
 │ │─[& fc00003f == c]
 │ │ │─SYSCALL : 32<[000000 .code(20) 001100]
 │ │─[& fc00003f == d]
 │ │ │─BREAK : 32<[000000 .code(20) 001101]
 │─[& fc000000 == 4000000]
 │ │─BLTZAL : 32<[000001 rs(5) 10000 ~imm(16)]
 │ │─BLTZ : 32<[000001 rs(5) 00000 ~imm(16)]
 │ │─BGEZAL : 32<[000001 rs(5) 10001 ~imm(16)]
 │ │─BGEZ : 32<[000001 rs(5) 00001 ~imm(16)]
 │─[& fc000000 == c000000]
 │ │─JAL : 32<[000011 t(26)]
 │─[& fc000000 == 8000000]
 │ │─J : 32<[000010 t(26)]
─[& f0000000 == 40000000]
 │─[& f2000000 == 40000000]
 │ │─MTC : 32<[0100 .z(2) 00100 rt(5) rd(5) 00000000000]
 │ │─CTC : 32<[0100 .z(2) 00110 rt(5) rd(5) 00000000000]
 │ │─MFC : 32<[0100 .z(2) 00000 rt(5) rd(5) 00000000000]
 │ │─CFC : 32<[0100 .z(2) 00010 rt(5) rd(5) 00000000000]
 │─[& f2000000 == 42000000]
 │ │─COP : 32<[0100 .z(2) 1 .cofun(25)]
─[& f0000000 == 30000000]
 │─LUI : 32<[001111 00000 rt(5) imm(16)]
 │─XORI : 32<[001110 rs(5) rt(5) imm(16)]
 │─ORI : 32<[001101 rs(5) rt(5) imm(16)]
 │─ANDI : 32<[001100 rs(5) rt(5) imm(16)]
─[& f0000000 == 10000000]
 │─BLEZ : 32<[000110 rs(5) 00000 ~imm(16)]
 │─BGTZ : 32<[000111 rs(5) 00000 ~imm(16)]
 │─BNE : 32<[000101 rs(5) rt(5) ~imm(16)]
 │─BEQ : 32<[000100 rs(5) rt(5) ~imm(16)]
─[& f0000000 == 20000000]
 │─SLTIU : 32<[001011 rs(5) rt(5) ~imm(16)]
 │─SLTI : 32<[001010 rs(5) rt(5) ~imm(16)]
 │─ADDIU : 32<[001001 rs(5) rt(5) ~imm(16)]
 │─ADDI : 32<[001000 rs(5) rt(5) ~imm(16)]
─[& f0000000 == b0000000]
 │─SWR : 32<[101110 base(5) rt(5) offset(16)]
─[& f0000000 == 90000000]
 │─LWR : 32<[100110 base(5) rt(5) offset(16)]
 │─LHU : 32<[100101 base(5) rt(5) offset(16)]
 │─LBU : 32<[100100 base(5) rt(5) offset(16)]
─[& f0000000 == a0000000]
 │─SWL : 32<[101010 base(5) rt(5) offset(16)]
 │─SW : 32<[101011 base(5) rt(5) offset(16)]
 │─SH : 32<[101001 base(5) rt(5) offset(16)]
 │─SB : 32<[101000 base(5) rt(5) offset(16)]
─[& f0000000 == 80000000]
 │─LWL : 32<[100010 base(5) rt(5) offset(16)]
 │─LW : 32<[100011 base(5) rt(5) offset(16)]
 │─LH : 32<[100001 base(5) rt(5) offset(16)]
 │─LB : 32<[100000 base(5) rt(5) offset(16)]
─[& f0000000 == e0000000]
 │─SWC : 32<[1110 .z(2) base(5) rt(5) offset(16)]
─[& f0000000 == c0000000]
 │─LWC : 32<[1100 .z(2) base(5) rt(5) offset(16)]

If several specification modes are provided, they are listed one
after the other.

arch/core.py

The architecture’s core module implements essential classes
for the definition of new cpu architectures:

	the instruction class models cpu instructions decoded by the disassembler.

	the disassembler class implements the instruction decoding logic based on provided specifications.

	the ispec class is a function decorator that allows to define the specification of an instruction.

	the Formatter class is used for instruction pretty printing

	
class arch.core.icore(istr=b'')

	This is the core class for the generic parent instruction class below.
It defines the mandatory API for all instructions.

	
bytes

	instruction’s bytes

	Type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
type

	one of (type_data_processing, type_control_flow,
type_cpu_state, type_system, type_other) or
type_undefined (default) or type_unpredictable.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
spec

	the specification that was decoded by the disassembler
to instanciate this instruction.

	Type

	ispec

	
mnemonic

	the mnemonic string as defined by the specification.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
operands

	the list of operands’ expressions.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
misc

	a defaultdict for passing various arch-dependent infos
(which returns None for undefined keys.)

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
classmethod set_uarch(uarch)

	class method to define the instructions’ semantics uarch dict

	
typename()

	returns the instruction’s type as a string

	
length

	length of the instruction in bytes

	
class arch.core.instruction(istr)

	The generic instruction class allows to define instruction for any cpu
instructions set and provides a common API for all arch-independent methods.
It extends the icore with an address attribute and formatter
methods.

	
address

	the memory address where this instruction as been disassembled.

	Type

	cst

	
classmethod set_formatter(f)

	classmethod that defines the formatter for all instances

	
static formatter(i, toks=False)

	default formatter if no formatter has been set, will return
the highlighted list from tokens for raw mnemonic,
and comma-separated operands expressions.

	
toks()

	returns the (unjoined) list of formatted tokens.

	
exception arch.core.InstructionError(i)

	

	
exception arch.core.DecodeError

	

	
class arch.core.disassembler(specmodules, iclass=<class 'arch.core.instruction'>, iset=<function disassembler.<lambda>>, endian=<function disassembler.<lambda>>)

	The generic disassembler class will decode a byte string based on provided
sets of instructions specifications and various parameters like endianess and
ways to select the appropriate instruction set.

	Parameters

	
	specmodules – list of python modules containing ispec decorated funcs

	iclass – the specific instruction class based on instruction

	iset – lambda used to select module (ispec list)

	endian – instruction fetch endianess (1: little, -1: big)

	
maxlen

	the length of the longest instruction found in provided specmodules.

	
iset

	the lambda used to select the right specifications for decoding

	
endian

	the lambda used to define endianess.

	
specs

	the tree of ispec objects that defines the cpu architecture.

	
setup(ispecs)

	setup will (recursively) organize the provided ispecs list into an optimal tree so that
__call__ can efficiently find the matching ispec format for a given bytestring
(we don’t want to search all specs until a match, so we need to separate formats as much
as possible). The output tree is (f,l) where f is the submask to check at this level
and l is a defaultdict such that l[x] is the subtree of formats for which submask is x.

	
class arch.core.ispec(format, **kargs)

	ispec (customizable) decorator

@ispec allows to easily define instruction decoders based on architecture specifications.

	Parameters

	
	spec (str [https://docs.python.org/3/library/stdtypes.html#str]) – a human-friendly format string that describes how the ispec object will
(on request) decode a given bytestring and how it will expose various
decoded entities to the decorated function in order to define an instruction.

	**kargs – additional arguments to ispec decorator must be provided with name=value
form and are declared as attributes/values within the instruction instance before
calling the decorated function. See below for conventions about names.

	
format

	the spec format passed as argument (see Note below).

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
hook

	the decorated python function to be called during decoding. The hook
function name is relevant only for instructions’ formatter.
See arch.core.Formatter.

	Type

	callable

	
iattr

	the dictionary of instruction attributes to add before decoding.
Attributes and their values are passed from the spec’s kargs when the
name does not start with an underscore.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
fargs

	the dictionary of keywords arguments to pass to the hook.
These keywords are decoded from the format or given by the spec’s kargs
when name starts with an underscore.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
precond

	an optional function that takes the instruction object as argument
and returns a boolean to indicate wether the hook can be called or not.
(This allows to avoid decoding when a prefix is missing for example.)

	Type

	func

	
size

	the bit length of the format (LEN value)

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
fix

	the values of fixed bits within the format

	Type

	Bits

	
mask

	the mask of fixed bits within the format

	Type

	Bits

Examples

This statement creates an ispec object with hook f, and registers this object
automatically in a SPECS list object within the module where the statement is found:

@ispec("32[.cond(4) 101 1 imm24(24)]", mnemonic="BL", _flag=True)
def f(obj,imm24,_flag):
 [...]

When provided with a bytestring, the decode() method of this ispec object will:

	proceed with decoding ONLY if bits 27,26,25,24 are 1,0,1,1 or raise an exception

	instanciate an instruction object (obj)

	decode 4 bits at position [28,29,30,31] and provide this value as an integer in ‘obj.cond’ instruction instance attribute.

	decode 24 bits at positions 23..0 and provide this value as an integer as argument ‘imm24’ of the decorated function f.

	set obj.mnemonic to ‘BL’ and pass argument _flag=True to f.

	call f(obj,…)

	return obj

Note

The spec string format is LEN ('<' or '>') '[' FORMAT ']' ('+' or '&' NUMBER)

	
	LEN is either an integer that represents the bit length of the instruction or ‘*’.

	Length must be a multiple of 8, ‘*’ is used for a variable length
instruction.

	
	FORMAT is a series of directives (see below.)

	Each directive represents a sequence of bits ordered according to the spec
direction : ‘<’ (default) means that directives are ordered from MSB (bit index LEN-1)
to LSB (bit index 0) whereas ‘>’ means LSB to MSB.

The spec string is optionally terminated with ‘+’ to indicate that it
represents an instruction prefix, or by ‘&’ NUMBER to indicate that the instruction
has a suffix of NUMBER more bytes to decode some of its operands.
In the prefix case, the bytestring matching the ispec format is stacked temporarily
until the rest of the bytestring matches a non prefix ispec.
In the suffix case, only the spec bytestring is used to define the instruction
but the read_instruction() fetcher will provide NUMBER more bytes to the
xdata() method of the instruction.

The directives defining the FORMAT string are used to associate symbols to bits
located at dedicated offsets within the bitstring to be decoded. A directive has the
following syntax:

	- (indicates that current bit position is not decoded)

	0 (indicates that current bit position must be 0)

	1 (indicates that current bit position must be 1)

or

	type SYMBOL location where:

	type is an optional modifier char with possible values:

	. indicates that the SYMBOL will be an attribute of the instruction.

	~ indicates that the decoded value will be returned as a Bits instance.

	# indicates that the decoded value will be returned as a string of [01] chars.

	= indicates that decoding should end at current position (overlapping)

if not present, the SYMBOL will be passed as a keyword argument to the function with
value decoded as an integer.

	SYMBOL: is a mandatory string matching regex [A-Za-z_][0-9A-Za-z_]*

	location: is an optional string matching the following expressions:

	
	(len)indicates that the value is decoded from the next len bits starting

	from the current position of the directive within the FORMAT string.

	
	(*)indicates a variable length directive for which the value is decoded

	from the current position with all remaining bits in the FORMAT. If the LEN is also variable then all remaining bits from the instruction
buffer input string are used.

default location value is (1).

The special directive {byte} is a shortcut for 8 fixed bits. For example
8>[{2f}] is equivalent to 8>[1111 0100], or 8<[0010 1111].

	
class arch.core.Formatter(formats)

	Formatter is used for instruction pretty printing

Basically, a Formatter object is created from a dict associating a key with a list
of functions or format string. The key is either one of the mnemonics or possibly
the name of a @ispec-decorated function (this allows to group formatting styles rather
than having to declare formats for every possible mnemonic.)
When the instruction is printed, the formatting list elements are “called” and
concatenated to produce the output string.

The computer algebra system package

Contents

	The computer algebra system package

	cas/expressions.py

	cas/smt.py

	cas/mapper.py

Symbolic expressions are provided by several classes found
in module cas/expressions:

	Constant cst, which represents immediate (signed or unsigned) value of fixed size (bitvector),

	Symbol sym, a Constant equipped with a reference string (non-external symbol),

	Register reg, a fixed size CPU register location,

	External ext, a reference to an external location (external symbol),

	Floats cfp, constant (fixed size) floating-point values,

	Composite comp, a bitvector composed of several elements,

	Pointer ptr, a memory location in a segment, with possible displacement,

	Memory mem, a Pointer to represent a value of fixed size in memory,

	Slice slc, a bitvector slice of any element,

	Test tst, a conditional expression, (see below.)

	Operator uop, an unary operator expression,

	Operator op, a binary operator expression. The list of supported operations is
not fixed althrough several predefined operators allow to build expressions directly from
Python expressions: say, you don’t need to write op('+',x,y), but can write x+y.
Supported operators are:

	+, -, * (multiply low), ** (multiply extended), /

	&, |, ^, ~

	==, !=, <=, >=, <, >

	>>, <<, // (arithmetic shift right), >>> and <<< (rotations).

See cas.expressions._operator for more details.

All elements inherit from the exp class which defines all default methods/properties.
Common attributes and methods for all elements are:

	size, a Python integer representing the size in bits,

	sf, the True/False sign-flag.

	length (size/8)

	mask (1<<size)-1

	extend methods (signextend(newsize), zeroextend(newsize))

	bytes(sta,sto,endian=1) method to retreive the expression of extracted bytes from sta to sto indices.

All manipulation of an expression object usually result in a new expression object except for
simplify() which performs a few in-place elementary simplifications.

cas/expressions.py

The expressions module implements all above exp classes.
All symbolic representation of data in amoco rely on these expressions.

	
class cas.expressions.exp(size=0, sf=False)

	the core class for all expressions.
It defines mandatory attributes, shared methods like dumps/loads etc.

	
size

	the bit size of the expression (default is 0.)

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
sf

	the sign flag of the expression (default is False: unsigned.)

	Type

	Bool

	
length

	the byte size of the expression.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
mask

	the bit mask of the expression.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

Note

len(exp) returns the byte size, assuming that size is a multiple of 8.

	
signed()

	consider expression as signed

	
unsigned()

	consider expression as unsigned

	
eval(env)

	evalute expression in given mapper env

	
simplify(**kargs)

	simplify expression based on predefined heuristics

	
depth()

	depth size of the expression tree

	
dumps()

	pickle expression

	
loads(s)

	unpickle expression

	
toks(**kargs)

	returns list of pretty printing tokens of the expression

	
pp(**kargs)

	pretty-printed string of the expression

	
bit(i)

	extract i-th bit expression of the expression

	
bytes(sta=0, sto=None, endian=1)

	returns the expression slice located at bytes [sta,sto]
taking into account given endianess 1 (little)
or -1 (big). Defaults to little endian.

	
extend(sign, size)

	extend expression to given size, taking sign into account

	
signextend(size)

	sign extend expression to given size

	
zeroextend(size)

	zero extend expression to given size

	
to_smtlib(solver=None)

	translate expression to its smt form

	
class cas.expressions.top(size=0, sf=False)

	top expression represents symbolic values
that have reached a high complexity threshold.

Note:
This expression is an absorbing element of the
algebra. Any expression that involves a top
expression results in a top expression.

	
depth()

	depth size of the expression tree

	
class cas.expressions.cst(v, size=32)

	cst expression represents concrete values (constants).

	
value

	get the integer of the expression, taking into account
the sign flag.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
toks(**kargs)

	returns list of pretty printing tokens of the expression

	
to_sym(ref)

	cast into a symbol expression associated to name ref

	
eval(env)

	evalute expression in given mapper env

	
zeroextend(size)

	zero extend expression to given size

	
signextend(size)

	sign extend expression to given size

	
class cas.expressions.sym(ref, v, size=32)

	symbol expression extends cst with a reference name for pretty printing

	
class cas.expressions.cfp(v, size=32)

	floating point concrete value expression

	
toks(**kargs)

	returns list of pretty printing tokens of the expression

	
eval(env)

	evalute expression in given mapper env

	
class cas.expressions.reg(refname, size=32)

	symbolic register expression

	
etype

	int([x]) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

	
toks(**kargs)

	returns list of pretty printing tokens of the expression

	
eval(env)

	evalute expression in given mapper env

	
class cas.expressions.regtype(t)

	decorator and context manager (with…) for associating
a register to a specific category among STD (standard),
PC (program counter), FLAGS, STACK, OTHER.

	
class cas.expressions.ext(refname, **kargs)

	external reference to a dynamic (lazy or non-lazy) symbol

	
toks(**kargs)

	returns list of pretty printing tokens of the expression

	
call(env, **kargs)

	explicit call to the ext’s stub

	
class cas.expressions.lab(refname, **kargs)

	label expression used by the assembler

	
cas.expressions.composer(parts)

	composer returns a comp object (see below) constructed with parts from low
significant bits parts to most significant bits parts.
The last part sf flag propagates to the resulting comp.

	
class cas.expressions.comp(s)

	composite expression, represents an expression made of several parts.

	
parts

	expressions parts dictionary.
Each key is a tuple (pos,sz) and value is the exp part.
pos is the bit position for this part, and sz is its size.

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
smask

	mapping of bit index to the part’s key that defines this bit.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

Note

Each part can be accessed by ‘slicing’ the comp to obtain another
comp or the part if the given slice indices match the part position.

	
toks(**kargs)

	returns list of pretty printing tokens of the expression

	
eval(env)

	evalute expression in given mapper env

	
simplify(**kargs)

	simplify expression based on predefined heuristics

	
cut(start, stop)

	cut will scan the parts dict to find those spanning over
start and/or stop bounds then it will split them and remove their
inner parts.

Note

cut is in in-place method (affects self).

	
restruct()

	restruct will aggregate consecutive cst expressions in order
to minimize the number of parts.

	
depth()

	depth size of the expression tree

	
class cas.expressions.mem(a, size=32, seg=None, disp=0, mods=None, endian=1)

	memory expression represents a symbolic value of length size, in segment seg,
at given address expression.

	
a

	a pointer expression that represents the address.

	Type

	ptr

	
endian

	1 means little, -1 means big.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
mods

	list of possibly aliasing operations affecting this exp.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

Note

The mods list allows to handle aliasing issues detected at fetching time
and adjust the eval result accordingly.

	
toks(**kargs)

	returns list of pretty printing tokens of the expression

	
eval(env)

	evalute expression in given mapper env

	
simplify(**kargs)

	simplify expression based on predefined heuristics

	
bytes(sta=0, sto=None, endian=0)

	returns the expression slice located at bytes [sta,sto]
taking into account given endianess 1 (little)
or -1 (big). Defaults to little endian.

	
class cas.expressions.ptr(base, seg=None, disp=0)

	ptr holds memory addresses with segment, base expressions and
displacement integer (offset relative to base).

	
base

	symbolic expression for the base of pointer address.

	Type

	exp

	
disp

	offset relative to base for the pointer address.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
seg

	segment register (or None if unused.)

	Type

	reg

	
toks(**kargs)

	returns list of pretty printing tokens of the expression

	
simplify(**kargs)

	simplify expression based on predefined heuristics

	
eval(env)

	evalute expression in given mapper env

	
cas.expressions.slicer(x, pos, size)

	wrapper of slc class that returns a simplified version of x[pos:pos+size].

	
class cas.expressions.slc(x, pos, size, ref=None)

	slice expression, represents an expression part.

	
x

	reference to the symbolic expression

	Type

	exp

	
pos

	start bit for the part.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
ref

	an alternative symbolic name for this part.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
etype

	int([x]) -> integer
int(x, base=10) -> integer

Convert a number or string to an integer, or return 0 if no arguments
are given. If x is a number, return x.__int__(). For floating point
numbers, this truncates towards zero.

If x is not a number or if base is given, then x must be a string,
bytes, or bytearray instance representing an integer literal in the
given base. The literal can be preceded by ‘+’ or ‘-‘ and be surrounded
by whitespace. The base defaults to 10. Valid bases are 0 and 2-36.
Base 0 means to interpret the base from the string as an integer literal.
>>> int(‘0b100’, base=0)
4

	
raw()

	returns the raw symbolic name (ignore the ref attribute.)

	
toks(**kargs)

	returns list of pretty printing tokens of the expression

	
depth()

	depth size of the expression tree

	
eval(env)

	evalute expression in given mapper env

	
simplify(**kargs)

	simplify expression based on predefined heuristics

	
class cas.expressions.tst(t, l, r)

	Conditional expression.

	
tst

	the boolean expression that represents the condition.

	Type

	exp

	
l

	the resulting expression if test == bit1.

	Type

	exp

	
r

	the resulting expression if test == bit0.

	Type

	exp

	
toks(**kargs)

	returns list of pretty printing tokens of the expression

	
eval(env)

	evalute expression in given mapper env

	
simplify(**kargs)

	simplify expression based on predefined heuristics

	
depth()

	depth size of the expression tree

	
cas.expressions.oper(opsym, l, r=None)

	wrapper of the operator expression that detects unary operations

	
class cas.expressions.op(op, l, r)

	op holds binary integer arithmetic and bitwise logic expressions

	
op

	binary operator

	Type

	_operator

	
prop

	type of operator (ARITH, LOGIC, CONDT, SHIFT)

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
l

	left-hand expression of the operator

	Type

	exp

	
r

	right-hand expression of the operator

	Type

	exp

	
eval(env)

	evalute expression in given mapper env

	
toks(**kargs)

	returns list of pretty printing tokens of the expression

	
simplify(**kargs)

	simplify expression based on predefined heuristics

	
depth()

	depth size of the expression tree

	
class cas.expressions.uop(op, r)

	uop holds unary integer arithmetic and bitwise logic expressions

	
op

	unary operator

	Type

	_operator

	
prop

	type of operator (ARITH, LOGIC, CONDT, SHIFT)

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
l

	returns None in case uop is treated as an op instance.

	Type

	None [https://docs.python.org/3/library/constants.html#None]

	
r

	right-hand expression of the operator

	Type

	exp

	
eval(env)

	evalute expression in given mapper env

	
toks(**kargs)

	returns list of pretty printing tokens of the expression

	
simplify(**kargs)

	simplify expression based on predefined heuristics

	
depth()

	depth size of the expression tree

	
cas.expressions.ror(x, n)

	high-level rotate right n bits

	
cas.expressions.rol(x, n)

	high-level rotate left n bits

	
cas.expressions.ltu(x, y)

	high-level less-than-unsigned operation

	
cas.expressions.geu(x, y)

	high level greater-or-equal-unsigned operation

	
cas.expressions.symbols_of(e)

	returns all symbols contained in expression e

	
cas.expressions.locations_of(e)

	returns all locations contained in expression e

	
cas.expressions.complexity(e)

	evaluate the complexity of expression e

	
cas.expressions.eqn1_helpers(e, **kargs)

	helpers for simplifying unary expressions

	
cas.expressions.eqn2_helpers(e, bitslice=False, widening=False)

	helpers for simplifying binary expressions

	
cas.expressions.extract_offset(e)

	separate expression e into (e’ + C) with C cst offset.

	
class cas.expressions.vec(l=None)

	vec holds a list of expressions each being a possible
representation of the current expression. A vec object
is obtained by merging several execution paths using
the merge function in the mapper module.
The simplify method uses the complexity measure to
eventually “reduce” the expression to top with a hard-limit
currently set to op.threshold.

	
toks(**kargs)

	returns list of pretty printing tokens of the expression

	
simplify(**kargs)

	simplify expression based on predefined heuristics

	
eval(env)

	evalute expression in given mapper env

	
depth()

	depth size of the expression tree

	
class cas.expressions.vecw(v)

	vecw is a widened vec expression: it allows to limit
the list of possible values to a fixed range and acts
as a top (absorbing) expression.

	
toks(**kargs)

	returns list of pretty printing tokens of the expression

	
eval(env)

	evalute expression in given mapper env

cas/smt.py

The smt module defines the amoco interface to the SMT solver.
Currently, only z3 is supported. This module allows to translate
any amoco expression into its z3 equivalent formula, as well as
getting the z3 solver results back as cas.mapper.mapper
instances.

	
cas.smt.newvar(pfx, e, slv)

	return a new z3 BitVec of size e.size, with name prefixed by slv argument

	
cas.smt.top_to_z3(e, slv=None)

	translate top expression into a new _topN BitVec variable

	
cas.smt.cst_to_z3(e, slv=None)

	translate cst expression into its z3 BitVecVal form

	
cas.smt.cfp_to_z3(e, slv=None)

	translate cfp expression into its z3 RealVal form

	
cas.smt.reg_to_z3(e, slv=None)

	translate reg expression into its z3 BitVec form

	
cas.smt.comp_to_z3(e, slv=None)

	translate comp expression into its z3 Concat form

	
cas.smt.slc_to_z3(e, slv=None)

	translate slc expression into its z3 Extract form

	
cas.smt.ptr_to_z3(e, slv=None)

	translate ptr expression into its z3 form

	
cas.smt.mem_to_z3(e, slv=None)

	translate mem expression into z3 a Concat of BitVec bytes

	
cas.smt.cast_z3_bool(x, slv=None)

	translate boolean expression into its z3 bool form

	
cas.smt.cast_z3_bv(x, slv=None)

	translate expression x to its z3 form, if x.size==1 the
returned formula is (If x ? 1 : 0).

	
cas.smt.tst_to_z3(e, slv=None)

	translate tst expression into a z3 If form

	
cas.smt.op_to_z3(e, slv=None)

	translate op expression into its z3 form

	
cas.smt.uop_to_z3(e, slv=None)

	translate uop expression into its z3 form

	
cas.smt.vec_to_z3(e, slv=None)

	translate vec expression into z3 Or form

	
cas.smt.to_smtlib(e, slv=None)

	return the z3 smt form of expression e

	
cas.smt.model_to_mapper(r, locs)

	return an amoco mapper based on given locs for the z3 model r

cas/mapper.py

The mapper module essentially implements the mapper class
and the associated merge() function which allows to get a
symbolic representation of the union of two mappers.

	
class cas.mapper.mapper(instrlist=None, csi=None)

	A mapper is a symbolic functional representation of the execution
of a set of instructions.

	Parameters

	
	instrlist (list [https://docs.python.org/3/library/stdtypes.html#list][instruction]) – a list of instructions that are
symbolically executed within the mapper.

	csi (Optional[object [https://docs.python.org/3/library/functions.html#object]]) – the optional csi attribute that provide
a concrete initial state

	
__map

	is an ordered list of mappings of expressions associated with a
location (register or memory pointer). The order is relevant
only to reflect the order of write-to-memory instructions in
case of pointer aliasing.

	
__Mem

	is a memory model where symbolic memory pointers are addressing
separated memory zones. See MemoryMap and MemoryZone classes.

	
conds

	is the list of conditions that must be True for the mapper

	
csi

	is the optional interface to a concrete state

	
conds

	

	
csi

	

	
view

	

	
inputs()

	list antecedent locations (used in the mapping)

	
outputs()

	list image locations (modified in the mapping)

	
has(loc)

	check if the given location expression is touched by the mapper

	
history(loc)

	

	
delayed(k, v)

	

	
update_delayed()

	

	
rw()

	get the read sizes and written sizes tuple

	
clear()

	clear the current mapper, reducing it to the identity transform

	
getmemory()

	get the local MemoryMap associated to the mapper

	
setmemory(mmap)

	set the local MemoryMap associated to the mapper

	
mmap

	get the local MemoryMap associated to the mapper

	
generation()

	

	
R(x)

	get the expression of register x

	
M(k)

	get the expression of a memory location expression k

	
aliasing(k)

	check if location k is possibly aliased in the mapper:
i.e. the mapper writes to some other symbolic location expression
after writing to k which might overlap with k.

	
update(instr)

	opportunistic update of the self mapper with instruction

	
safe_update(instr)

	update of the self mapper with instruction only if no exception occurs

	
restruct()

	

	
eval(m)

	return a new mapper instance where all input locations have
been replaced by there corresponding values in m.

	
rcompose(m)

	composition operator returns a new mapper
corresponding to function x -> self(m(x))

	
interact()

	

	
use(*args, **kargs)

	return a new mapper corresponding to the evaluation of the current mapper
where all key symbols found in kargs are replaced by their values in
all expressions. The kargs “size=value” allows for adjusting symbols/values
sizes for all arguments.
if kargs is empty, a copy of the result is just a copy of current mapper.

	
usemmap(mmap)

	return a new mapper corresponding to the evaluation of the current mapper
where all memory locations of the provided mmap are used by the current
mapper.

	
assume(conds)

	

	
cas.mapper.merge(m1, m2, **kargs)

	union of two mappers

The system package

Modules of this package implement all classes that relate
to operating system specific operations as well as userland
stubs or high-level language structures.

Contents

	The system package

	system/core.py

	system/memory.py

	system/structs.py

	system/elf.py

	system/pe.py

	system/macho.py

	system/utils.py

system/core.py

This module defines all task/process core classes related to binary format and
execution inherited by all system specific execution classes of
the amoco.system package.

	
class system.core.CoreExec(p, cpu=None)

	This class implements the base class for Task(s).
CoreExec or Tasks are used to represent a memory mapped binary
executable program, providing the generic instruction or data fetchers and
the mandatory API for amoco.emu or amoco.sa analysis classes.
Most of the amoco.system modules use this base class to implement
a OS-specific Task class (see Linux/x86, Win32/x86, etc).

	
bin

	the program executable format object. Currently supported formats
are provided in system.elf (Elf32/64), system.pe (PE)
and system.utils (HEX/SREC).

	
cpu

	reference to the architecture cpu module, which provides a generic
access to the PC() program counter and
obviously the CPU registers and disassembler.

	
OS

	optional reference to the OS associated to the child Task.

	
state

	the mapper instance that represents the current state
of the executable program, including mapping of registers as well
as the MemoryMap instance that represents the virtual
memory of the program.

	
read_data(vaddr, size)

	fetch size data bytes at virtual address vaddr, returned
as a list of items being either raw bytes or symbolic expressions.

	
read_instruction(vaddr, **kargs)

	fetch instruction at virtual address vaddr, returned as an
cpu.instruction instance or cpu.ext in case an external expression
is found at vaddr or vaddr is an external symbol.

Raises MemoryError in case vaddr is not mapped,
and returns None if disassembler fails to decode bytes at vaddr.

Note:
Returning a cpu.ext expression means that this instruction starts
an external stub function.
It is the responsibility of the fetcher (emulator or analyzer)
to eventually call the stub to modify the state mapper.

	
getx(loc, size=8, sign=False)

	high level method to get the expressions value associated
to left-value loc (register or address). The returned value
is an integer if the expression is constant or a symbolic
expression instance.
The input loc is either a register string, an integer address,
or associated expressions’ instances.
Optionally, the returned expression sign flag can be adjusted
by the sign argument.

	
setx(loc, val, size=0)

	high level method to set the expressions value associated
to left-value loc (register or address). The value
is possibly an integer or a symbolic expression instance.
The input loc is either a register string, an integer address,
or associated expressions’ instances.
Optionally, the size of the loc expression can be adjusted
by the size argument.

	
get_int64(loc)

	get 64-bit int expression of current state(loc)

	
get_uint64(loc)

	get 64-bit unsigned int expression of current state(loc)

	
get_int32(loc)

	get 32-bit int expression of current state(loc)

	
get_uint32(loc)

	get 32-bit unsigned int expression of current state(loc)

	
get_int16(loc)

	get 16-bit int expression of current state(loc)

	
get_uint16(loc)

	get 16-bit unsigned int expression of current state(loc)

	
get_int8(loc)

	get 8-bit int expression of current state(loc)

	
get_uint8(loc)

	get 8-bit unsigned int expression of current state(loc)

	
class system.core.DefineStub(obj, refname, default=False)

	decorator to define a stub for the given ‘refname’ library function.

	
class system.core.BinFormat

	Base class for binary format API, just to define default attributes
and recommended properties. See elf.py, pe.py and macho.py for example of
child classes.

	
class system.core.DataIO(f)

	This class simply wraps a binary file or a bytes string and implements
both the file and bytes interface. It allows an input to be provided as
files of bytes and manipulated as either a file or a bytes object.

	
system.core.read_program(filename)

	Identifies the program header and returns an ELF, PE, Mach-O or DataIO.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – the program to read.

	Returns

	an instance of currently supported program format
(ELF, PE, Mach-O, HEX, SREC)

	
class system.core.DefineLoader(fmt, name='')

	A decorator that allows to register a system-specific loader
while it is implemented. All loaders are stored in the class global
LOADERS dict.

Example

@DefineLoader(‘elf’,elf.EM_386)
def loader_x86(p):

…

Here, a reference to function loader_x86 is stored in
LOADERS[‘elf’][elf.EM_386].

	
system.core.load_program(f, cpu=None)

	Detects program format header (ELF/PE/Mach-O/HEX/SREC),
and maps the program in abstract memory,
loading the associated “system” (linux/win) and “arch” (x86/arm),
based header informations.

	Parameters

	f (str [https://docs.python.org/3/library/stdtypes.html#str]) – the program filename or string of bytes.

	Returns

	a Task, ELF/PE (old CoreExec interfaces) or RawExec instance.

system/memory.py

This module defines all Memory related classes.

The main class of amoco’s Memory model is MemoryMap.
It provides a way to represent both concrete and abstract symbolic values
located in the virtual memory space of a process.
In order to allow addresses to be symbolic as well, the MemoryMap is
organised as a collection of MemoryZone.
A zone holds values located at addresses that are integer offsets
related to a symbolic expression. A default zone with related address set
to None holds values at concrete (virtual) addresses in every MemoryMap.

	
class system.memory.MemoryMap

	Provides a way to represent concrete and abstract symbolic values
located in the virtual memory space of a process.
A MemoryMap is organised as a collection of MemoryZone.

	
_zones

	dictionary of zones, keys are the related address expressions.

	
newzone(label)

	creates a new memory zone with the given label related
expression.

	
locate(address)

	returns the memory object that maps the provided
address expression.

	
reference(address)

	returns a couple (rel,offset) based on the given
address, an integer, a string or an expression allowing to find
a candidate zone within memory.

	
read(address, l)

	reads l bytes at address. returns a list of
datadiv values.

	
write(address, expr, endian=1)

	writes given expression at
given (possibly symbolic) address. Default endianness is ‘little’.
Use endian=-1 to indicate big endian convention.

	
restruct()

	optimize all zones to merge contiguous raw bytes into single
mo objects.

	
grep(pattern)

	find all occurences of the given regular expression in
the raw bytes objects of all memory zones.

	
merge(other)

	update this MemoryMap with a new MemoryMap, merging
overlapping zones with values from the new map.

	
class system.memory.MemoryZone(rel=None)

	A MemoryZone contains mo objects at addresses that are integer offsets
related to a symbolic expression. A default zone with related address set
to None holds values at concrete addresses in every MemoryMap.

	Parameters

	rel (exp) – the relative symbolic expression, defaults to None.

	
rel

	the relative symbolic expression, or None.

	
_map

	the ordered list of mo objects of this zone.

	
range()

	returns the lowest and highest addresses currently used by
mo objects of this zone.

	
locate(vaddr)

	if the given address is within range, return the
index of the corresponding mo object in _map, otherwise
return None.

	
read(vaddr, l)

	reads l bytes starting at vaddr. returns a list of
datadiv values, unmapped areas are returned as bottom exp.

	
write(vaddr, data)

	writes data expression or
bytes at given (offset) address.

	
addtomap(z)

	add (possibly overlapping) mo object z to the
_map, eventually adjusting other objects.

	
restruct()

	optimize the zone to merge contiguous raw bytes into single
mo objects.

	
shift(offset)

	shift all mo objects by a given offset.

	
grep(pattern)

	find all occurences of the given regular expression in
the raw bytes objects of the zone.

	
class system.memory.mo(vaddr, data, endian=1)

	A mo object essentially associates a datadiv with a memory offset, and
provides methods to detect if an address is located within this object,
to read or write bytes at a given address. The offset is relative to the
start of the MemoryZone in which the mo object is stored.

	
vaddr

	a python integer that represents the offset within the memory
zone that contains this memory object (mo).

	
data

	the datadiv object located at this offset.

	
trim(vaddr)

	if this mo contains data at given offset, cut out this
data and points current object to this offset. Note that a trim is
generally the result of data being overwritten by another mo.

	
read(vaddr, l)

	returns the list of datadiv objects at given offset so
that the total length is at most l, and the number of bytes missing
if the total length is less than l.

	
write(vaddr, data)

	updates current mo to reflect the writing of data at
given offset and returns the list of possibly new mo objects to be
inserted in the zone.

	
class system.memory.datadiv(data, endian)

	A datadiv represents any data within memory, including symbolic expressions.

	Parameters

	
	data – either a string of bytes or an amoco expression.

	endian – either [-1,1], used when data is any symbolic expression.
1 is for little-endian, -1 for big-endian.

	
val

	the reference to the data object.

	
_is_raw

	a flag indicating that the data object is a string of bytes.

	
cut(l)

	cut out the first l bytes of the current data, keeping only
the remaining part of the data.

	
setlen(l)

	cut out trailing bytes of the current data, keeping only
the first l bytes.

	
getpart(o, l)

	returns a pair (result, counter) where result is a part
of data of length at most l located at offset o (relative to the
beginning of the data bytes), and counter is the number of bytes
missing (l-len(result)) if the current data length is less than l.

	
setpart(o, data)

	returns a list of contiguous datadiv objects that
correspond to overwriting self with data at offset o (possibly
extending the current datadiv length).

	
system.memory.mergeparts(P)

	This function will detect every contiguous raw datadiv objects in the
input list P, and will return a new list where these objects have been
merged into a single raw datadiv object.

	Parameters

	P (list [https://docs.python.org/3/library/stdtypes.html#list]) – input list of datadiv objects.

	Returns

	the list after raw datadiv objects have been merged.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

system/structs.py

The system structs module implements classes that allow to easily define,
encode and decode C structures (or unions) as well as formatters to print
various fields according to given types like hex numbers, dates, defined
constants, etc.
This module extends capabilities of struct [https://docs.python.org/3/library/struct.html#module-struct] by allowing formats to
include more than just the basic types and add named fields.
It extends ctypes [https://docs.python.org/3/library/ctypes.html#module-ctypes] as well by allowing formatted printing and
“non-static” decoding where the way a field is decoded depends on
previously decoded fields.

Module system.imx6 uses these classes to decode HAB structures and
thus allow for precise verifications on how the boot stages are verified.
For example, the HAB Header class is defined with:

@StructDefine("""
B : tag
H :> length
B : version
""")
class HAB_Header(StructFormatter):
 def __init__(self,data="",offset=0):
 self.name_formatter('tag')
 self.func_formatter(version=self.token_ver_format)
 if data:
 self.unpack(data,offset)
 @staticmethod
 def token_ver_format(k,x,cls=None):
 return highlight([(Token.Literal,"%d.%d"%(x>>4,x&0xf))])

Here, the StructDefine decorator is used to provide the definition of
fields of the HAB Header structure to the HAB_Header class.

The tag Field is an unsigned byte and the StructFormatter
utilities inherited by the class set it as a name_formatter() allow
the decoded byte value from data to be represented by its constant name.
This name is obtained from constants defined with:

with Consts('tag'):
 HAB_TAG_IVT = 0xd1
 HAB_TAG_DCD = 0xd2
 HAB_TAG_CSF = 0xd4
 HAB_TAG_CRT = 0xd7
 HAB_TAG_SIG = 0xd8
 HAB_TAG_EVT = 0xdb
 HAB_TAG_RVT = 0xdd
 HAB_TAG_WRP = 0x81
 HAB_TAG_MAC = 0xac

The length field is a bigendian short integer with default formatter,
and the version field is an unsigned byte with a dedicated formatter
function that extracts major/minor versions from the byte nibbles.

This allows to decode and print the structure from provided data:

In [3]: h = HAB_Header('\xd1\x00\x0a\x40')
In [4]: print(h)
[HAB_Header]
tag :HAB_TAG_IVT
length :10
version :4.0

	
class system.structs.Consts(name)

	Provides a contextmanager to map constant values with their names in
order to build the associated reverse-dictionary.

All revers-dict are stored inside the Consts class definition.
For example if you declare variables in a Consts(‘example’) with-scope,
the reverse-dict will be stored in Consts.All[‘example’].
When StructFormatter will lookup a variable name matching a given value
for the attribute ‘example’, it will get Consts.All[‘example’][value].

Note: To avoid attribute name conflicts, the lookup is always prepended
the stucture class name (or the ‘alt’ field of the structure class).
Hence, the above ‘tag’ constants could have been defined as:

with Consts('HAB_header.tag'):
 HAB_TAG_IVT = 0xd1
 HAB_TAG_DCD = 0xd2
 HAB_TAG_CSF = 0xd4
 HAB_TAG_CRT = 0xd7
 HAB_TAG_SIG = 0xd8
 HAB_TAG_EVT = 0xdb
 HAB_TAG_RVT = 0xdd
 HAB_TAG_WRP = 0x81
 HAB_TAG_MAC = 0xac

Or the structure definition could have define an ‘alt’ attribute:

@StructDefine("""
B : tag
H :> length
B : version
""")
class HAB_Header(StructFormatter):
 alt = 'hab'
 [...]

in which case the variables could have been defined with:

with Consts('hab.tag'):
[...]

	
system.structs.token_default_fmt(k, x, cls=None)

	The default formatter just prints value ‘x’ of attribute ‘k’
as a literal token python string

	
system.structs.token_address_fmt(k, x, cls=None)

	The address formatter prints value ‘x’ of attribute ‘k’
as a address token hexadecimal value

	
system.structs.token_constant_fmt(k, x, cls=None)

	The constant formatter prints value ‘x’ of attribute ‘k’
as a constant token decimal value

	
system.structs.token_mask_fmt(k, x, cls=None)

	The mask formatter prints value ‘x’ of attribute ‘k’
as a constant token hexadecimal value

	
system.structs.token_name_fmt(k, x, cls=None)

	The name formatter prints value ‘x’ of attribute ‘k’
as a name token variable symbol matching the value

	
system.structs.token_flag_fmt(k, x, cls)

	The flag formatter prints value ‘x’ of attribute ‘k’
as a name token variable series of symbols matching
the flag value

	
system.structs.token_datetime_fmt(k, x, cls=None)

	The date formatter prints value ‘x’ of attribute ‘k’
as a date token UTC datetime string from timestamp value

	
class system.structs.Field(ftype, fcount=0, fname=None, forder=None, falign=0, fcomment='')

	A Field object defines an element of a structure, associating a name
to a structure typename and a count. A count of 0 means that the element
is an object of type typename, a count>0 means that the element is a list
of objects of type typename of length count.

	
typename

	name of a Structure type for this field.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
count

	A count of 0 means that the element
is an object of type typename, a count>0 means that the element is a list
of length count of objects of type typename

	Type

	int=0

	
name

	the name associated to this field.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
type

	getter for the type associated with the field’s typename.

	Type

	StructFormatter

	
comment

	comment, useful for pretty printing field usage

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
order

	forces the endianness of this field.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
size()

	number of bytes eaten by this field.

	
format()

	format string that allows to struct.(un)pack the field as a
string of bytes.

	
unpack(data, offset=0)

	unpacks a data from given offset using
the field internal byte ordering. Returns the object (if count is 0) or the
list of objects of type typename.

	
get(data, offset=0)

	returns the field name and the unpacked value
for this field.

	
pack(value)

	packs the value with the internal order and returns the
byte string according to type typename.

	
format()

	a (non-Raw)Field format is always returned as matching a finite-length string.

	
unpack(data, offset=0)

	returns a (sequence of count) element(s) of its self.type

	
class system.structs.RawField(ftype, fcount=0, fname=None, forder=None, falign=0, fcomment='')

	A RawField is a Field associated to a raw type, i.e. an internal type
matching a standard C type (u)int8/16/32/64, floats/double, (u)char.
Contrarily to a generic Field which essentially forward the unpack call to
its subtype, a RawField relies on the struct package to return the raw
unpacked value.

	
format()

	a (non-Raw)Field format is always returned as matching a finite-length string.

	
unpack(data, offset=0)

	returns a (sequence of count) element(s) of its self.type

	
class system.structs.VarField(ftype, fcount=0, fname=None, forder=None, falign=0, fcomment='')

	A VarField is a RawField with variable length, associated with a
termination condition that will end the unpack method.
An instance of VarField has an infinite size() unless it has been
unpacked with data.

	
format()

	a (non-Raw)Field format is always returned as matching a finite-length string.

	
unpack(data, offset=0)

	returns a (sequence of count) element(s) of its self.type

	
class system.structs.CntField(ftype, fcount=0, fname=None, forder=None, falign=0, fcomment='')

	A CntField is a RawField where the amount of elements to unpack
is provided as first bytes, encoded as either a byte/word/dword.

	
format()

	a (non-Raw)Field format is always returned as matching a finite-length string.

	
unpack(data, offset=0)

	returns a (sequence of count) element(s) of its self.type

	
class system.structs.StructDefine(fmt, **kargs)

	StructDefine is a decorator class used for defining structures
by parsing a simple intermediate language input decorating
a StructFormatter class.

	
class system.structs.UnionDefine(fmt, **kargs)

	UnionDefine is a decorator class based on StructDefine,
used for defining unions.

	
class system.structs.StructCore

	StructCore is a ParentClass for all user-defined structures based on a
StructDefine format. This class contains essentially the packing and unpacking
logic of the structure.

Note:
It is mandatory that any class that inherits from StructCore can be
instanciated with no arguments.

	
class system.structs.StructFormatter

	StructFormatter is the Parent Class for all user-defined structures
based on a StructDefine format.
It inherits the core logic from StructCore Parent and provides all
formatting facilities to pretty print the structures based on wether
the field is declared as a named constant, an integer of hex value,
a pointer address, a string or a date.

Note: Since it inherits from StructCore, it is mandatory that any child
class can be instanciated with no arguments.

	
class system.structs.StructMaker

	The StructMaker class is a StructFormatter equipped with methods that
allow to interactively define and adjust fields at some given offsets
or when some given sample bytes match a given value.

	
system.structs.StructFactory(name, fmt, **kargs)

	Returns a StructFormatter class build with name and format

	
system.structs.UnionFactory(name, fmt, **kargs)

	Returns a StructFormatter (union) class build with name and format

	
exception system.structs.StructureError(message)

	

system/elf.py

The system elf module implements Elf classes for both 32/64bits executable format.

	
exception system.elf.ElfError(message)

	ElfError is raised whenever Elf object instance fails
to decode required structures.

	
class system.elf.Elf(f)

	This class takes a DataIO object (ie an opened file of BytesIO instance)
and decodes all ELF structures found in it.

	
entrypoints

	list of entrypoint addresses.

	Type

	list of int

	
filename

	binary file name.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
Ehdr

	the ELF header structure.

	Type

	Ehdr

	
Phdr

	the list of ELF Program header structures.

	Type

	list of Phdr

	
Shdr

	the list of ELF Section header structures.

	Type

	list of Shdr

	
dynamic

	True if the binary wants to load dynamic libs.

	Type

	Bool

	
basemap

	base address for this ELF image.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
functions

	a list of function names gathered from internal
definitions (if not stripped) and import names.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
variables

	a list of global variables’ names (if found.)

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
getsize()

	total file size of all the Program headers

	
getinfo(target)

	target is either an address provided as str or int,
or a symbol str searched in the functions dictionary.

	Returns a triplet with:

	
	section index (0 is error, -1 is a dynamic call)

	offset into section (idem)

	base virtual address (0 for dynamic calls)

	
data(target, size)

	returns ‘size’ bytes located at target virtual address

	
getfileoffset(target)

	converts given target virtual address back to offset in file

	
readsegment(S)

	returns segment S data padded to S.p_memsz

	
loadsegment(S, pagesize=None)

	If S is of type PT_LOAD, returns a dict {base: bytes}
indicating that segment data bytes (extended to pagesize boundary)
need to be mapped at virtual base address.
(Returns None if not a PT_LOAD segment.)

	
readsection(sect)

	returns the given section data bytes from file.

	
checksec()

	check for usual security features.

	
class system.elf.IDENT(data=None)

	

	
class system.elf.Ehdr(data=None)

	

	
class system.elf.Shdr(data=None, offset=0, order=None, x64=False)

	

	
class system.elf.Sym(data=None, offset=0, order=None, x64=False)

	

	
class system.elf.Rel(data=None, offset=0, order=None, x64=False)

	

	
class system.elf.Rela(data=None, offset=0, order=None, x64=False)

	

	
class system.elf.Phdr(data=None, offset=0, order=None, x64=False)

	

	
class system.elf.Note(data=None, offset=0, order=None, x64=False)

	

	
class system.elf.Dyn(data=None, offset=0, order=None, x64=False)

	

	
class system.elf.Lib(data=None, offset=0, order=None, x64=False)

	

system/pe.py

The system pe module implements the PE class which support both 32 and 64 bits
executable formats.

	
exception system.pe.PEError(message)

	PEError is raised whenever PE object instance fails
to decode required structures.

	
class system.pe.PE(data)

	This class takes a DataIO object (ie an opened file of BytesIO instance)
and decodes all PE structures found in it.

	
data

	a reference to the input data file/bytes object.

	Type

	DataIO

	
entrypoints

	list of entrypoint addresses.

	Type

	list of int

	
filename

	binary file name.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
DOS

	the DOS Header (only if present.)

	Type

	DOSHdr,optional

	
NT

	the PE header.

	Type

	COFFHdr

	
Opt

	the Optional Header

	Type

	OptionalHdr

	
basemap

	base address for this ELF image.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
sections

	list of PE sections.

	Type

	list of SectionHdr

	
functions

	a list of function names gathered from internal
definitions (if not stripped) and import names.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
variables

	a list of global variables’ names (if found.)

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
tls

	the Thead local Storage table (or None.)

	Type

	TlsTable

	
locate(addr, absolute=False)

	
	returns a tuple with:

	
	the section that holds addr (rva or absolute), or 0 or None.

	the offset within the section (or addr or 0).

Note

If returned section is 0, then addr is within SizeOfImage,
but is not found within any sections. Then offset is addr.
If returned section is None, then addr is not mapped at all,
and offset is set to 0.

	
getdata(addr, absolute=False)

	get section bytes from given virtual address to end of mapped section.

	
loadsegment(S, pagesize=0, raw=False)

	returns a dict {base: bytes} (or only bytes if optional arg raw is True,)
indicating that section S data bytes (padded and extended to pagesize bounds)
need to be mapped at virtual base address.

Note

If S is 0, returns base=0 and the first Opt.SizeOfHeaders bytes.

	
getfileoffset(addr)

	converts given address back to offset in file

	
class system.pe.DOSHdr(data=None)

	

	
class system.pe.COFFHdr(data=None, offset=0)

	

	
class system.pe.OptionalHdr(data=None, offset=0)

	

	
class system.pe.DataDirectory(data=None, offset=0)

	

	
class system.pe.SectionHdr(data=None, offset=0)

	

	
class system.pe.COFFRelocation(data=None, offset=0)

	

	
class system.pe.COFFLineNumber(data=None, offset=0)

	

	
class system.pe.StdSymbolRecord(data=None, offset=0)

	

	
class system.pe.AuxSymbolRecord(data=None, offset=0)

	

	
class system.pe.AuxFunctionDefinition(data=None, offset=0)

	

	
class system.pe.Aux_bf_ef(data=None, offset=0)

	

	
class system.pe.AuxWeakExternal(data=None, offset=0)

	

	
class system.pe.AuxFile(data=None, offset=0)

	

	
class system.pe.AuxSectionDefinition(data=None, offset=0)

	

	
class system.pe.AttributeCertificate

	

	
class system.pe.DelayLoadDirectoryTable(data=None, offset=0)

	

	
class system.pe.ExportTable(data=None, offset=0)

	

	
class system.pe.ImportTableEntry(data=None, offset=0)

	

	
class system.pe.TLSTable(data, magic)

	

	
class system.pe.LoadConfigTable(data, magic)

	

system/macho.py

The system macho module implements the Mach-O executable format parser.

	
exception system.macho.MachOError(message)

	MachOError is raised whenever MachO object instance fails
to decode required structures.

	
class system.macho.MachO(f)

	This class takes a DataIO object (ie an opened file of BytesIO instance)
and decodes all Mach-O structures found in it.

	
entrypoints

	list of entrypoint addresses.

	Type

	list of int

	
filename

	binary file name.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
header

	the Mach header structure.

	Type

	struct_mach_header

	
archs

	the list of MachO instances in case the
provided binary file is a “fat” format.

	Type

	list of MachO

	
cmds

	the list of all “command” structures.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
dynamic

	True if the binary wants to load dynamic libs.

	Type

	Bool

	
basemap

	Base address of the binary (or None.)

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
symtab

	the symbol table.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
dysymtab

	the dynamic symbol table.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
dyld_info

	a container with dyld_info attributes
rebase, bind, weak_bind, lazy_bind
and export.

	Type

	container

	
function_starts

	list of function start addresses.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list],optional

	
la_symbol_ptr

	address to lazy symbol bindings

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
nl_symbol_ptr

	address to non-lazy symbol bindings

	Type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
read_fat_arch(a)

	takes a struct_fat_arch instance and sets its ‘bin’ attribute
to the corresponding MachO instance.

	
read_commands(offset)

	returns the list of struct_load_command starting from given offset

	
getsize()

	total size of LC_SEGMENT/64 commands

	
getinfo(target)

	getinfo return a triplet (s,off,vaddr) with segment, offset
into segment, and segment virtual base address that contains the
target argument.

	
checksec()

	check for usual OSX security features.

	
data(target, size)

	returns ‘size’ bytes located at target virtual address

	
getfileoffset(target)

	converts given target virtual address back to offset in file

	
readsegment(S)

	returns data of segment/section S

	
loadsegment(S, pagesize=None)

	returns padded & aligned data of segment/section S

	
readsection(sect)

	returns the segment/section data bytes matching given sect name

	
getsection(sect)

	returns the segment/section matching given sect name

	
class system.macho.struct_fat_header(data=None)

	

	
class system.macho.struct_fat_arch(data=None, offset=0)

	

	
class system.macho.struct_mach_header(data=None)

	

	
class system.macho.struct_mach_header_64(data=None)

	

	
class system.macho.struct_load_command(data=None, offset=0)

	

	
class system.macho.MachoFormatter

	

	
class system.macho.struct_segment_command(data=None, offset=0)

	

	
class system.macho.struct_segment_command_64(data=None, offset=0)

	

	
class system.macho.SFLG(data=None, offset=0)

	

	
class system.macho.struct_section(data=None, offset=0)

	

	
class system.macho.struct_section_64(data=None, offset=0)

	

	
class system.macho.lc_str(data=None, offset=0)

	

	
class system.macho.struct_fvmlib(data=None, offset=0)

	

	
class system.macho.struct_fvmlib_command(data='', offset=0)

	

	
class system.macho.struct_dylib(data='', offset=0)

	

	
class system.macho.struct_dylib_command(data='', offset=0)

	

	
class system.macho.struct_sub_framework_command(data='', offset=0)

	

	
class system.macho.struct_sub_client_command(data='', offset=0)

	

	
class system.macho.struct_sub_umbrella_command(data='', offset=0)

	

	
class system.macho.struct_sub_library_command(data='', offset=0)

	

	
class system.macho.struct_prebound_dylib_command(data='', offset=0)

	

	
class system.macho.struct_dylinker_command(data='', offset=0)

	

	
class system.macho.struct_thread_command(data='', offset=0)

	

	
class system.macho.struct_x86_thread_state32(data='', offset=0)

	

	
class system.macho.struct_x86_thread_state64(data='', offset=0)

	

	
class system.macho.struct_arm_thread_state32(data='', offset=0)

	

	
class system.macho.struct_arm_thread_state64(data='', offset=0)

	

	
class system.macho.struct_routines_command(data='', offset=0)

	

	
class system.macho.struct_routines_command_64(data='', offset=0)

	

	
class system.macho.struct_symtab_command(data='', offset=0)

	

	
class system.macho.struct_nlist(data='', offset=0)

	

	
class system.macho.struct_nlist64(data='', offset=0)

	

	
class system.macho.struct_dysymtab_command(data='', offset=0)

	

	
class system.macho.struct_dylib_table_of_contents(data='', offset=0)

	

	
class system.macho.struct_dylib_module(data='', offset=0)

	

	
class system.macho.struct_dylib_module_64(data='', offset=0)

	

	
class system.macho.struct_dylib_reference(data='', offset=0)

	

	
class system.macho.struct_twolevel_hints_command(data='', offset=0)

	

	
class system.macho.twolevel_hint(data='', offset=0)

	

	
class system.macho.struct_prebind_cksum_command(data='', offset=0)

	

	
class system.macho.struct_uuid_command(data='', offset=0)

	

	
class system.macho.struct_rpath_command(data='', offset=0)

	

	
class system.macho.struct_linkedit_data_command(data='', offset=0)

	

	
class system.macho.struct_encryption_info_command(data='', offset=0)

	

	
class system.macho.struct_dyld_info_command(data='', offset=0)

	

	
class system.macho.struct_symseg_command(data='', offset=0)

	

	
class system.macho.struct_ident_command(data='', offset=0)

	

	
class system.macho.struct_fvmfile_command(data='', offset=0)

	

	
class system.macho.struct_entry_point_command(data='', offset=0)

	

	
class system.macho.struct_data_in_code_entry(data='', offset=0)

	

	
class system.macho.struct_note_command(data='', offset=0)

	

	
class system.macho.struct_source_version_command(data='', offset=0)

	

	
class system.macho.struct_version_min_command(data='', offset=0)

	

	
class system.macho.struct_build_version_command(data='', offset=0)

	

	
class system.macho.struct_build_tool_version(data='', offset=0)

	

	
class system.macho.struct_relocation_info(data='', offset=0)

	

	
class system.macho.struct_indirect_entry(data='', offset=0)

	

	
class system.raw.RawExec(p, cpu=None)

	

system/utils.py

The system utils module implements various binary file format like
Intel HEX or Motorola SREC, commonly used for programming MCU, EEPROMs, etc.

	
exception system.utils.FormatError(message)

	

	
class system.utils.HEX(f, offset=0)

	

	
class system.utils.SREC(f, offset=0)

	

The static analysis package

The user interface package

code.py

This module defines classes that represent assembly instructions blocks,
functions, and calls to external functions. In amoco, such objects are
found as node.data in nodes of a cfg.graph. As such,they
all provide a common API with:

	address to identify and locate the object in memory

	support to get the address range of the object

	view to display the object

	
class code.block(instrlist)

	A block instance holds a sequence of instructions.

	Parameters

	instr (list [https://docs.python.org/3/library/stdtypes.html#list][instruction]) – the sequence of continuous (ordered) instructions

	
instr

	the list of instructions of the block.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
view

	holds the ui.views object used to display the block.

	Type

	blockView

	
length

	the byte length of the block instructions sequence.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
support

	the memory footprint of the block

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
address

	the address of the first instruction in the block.

	Type

	address (cst)

	
cut(address)

	cutting the block at given address will remove instructions after this address,
(which needs to be aligned with instructions boundaries.) The effect is thus to
reduce the block size.

	Parameters

	address (cst) – the address where the cut occurs.

	Returns

	the number of instructions removed from the block.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
raw()

	returns the raw bytestring of the block instructions.

	
class code.func(g=None)

	A graph of blocks that represents a function’s Control-Flow-Graph (CFG).

	Parameters

	g (graph_core) – the connected graph component of nodes.

	
cfg

	the graph_core CFG of the function
(see cfg.)

	Type

	graph_core

	
blocks

	the list of blocks in the CFG

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][block]

	
support

	the memory footprint of the function

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
blocks

	the list of blocks within the function.

	Type

	blocks (list [https://docs.python.org/3/library/stdtypes.html#list])

	
class code.tag

	defines keys as class attributes, used in misc attributes to
indicate various relevant properties of blocks within functions.

	
classmethod list()

	get the list of all defined keys

	
classmethod sig(name)

	symbols for tag keys used to compute the block’s signature

cfg.py

This module provides elements to define control flow graphs (CFG).
It is based essentially on classes provided by the grandalf [https://grandalf.readthedocs.io/] package.

	
class cfg.node(acode)

	A node is a graph vertex that embeds a code object.
It extends the Vertex class in order to compare
nodes by their data blocks rather than their id.

	Parameters

	acode – an instance of block, func or xfunc.

	
data

	the reference to the acode argument above.

	
e

	inherited from grandalf [https://grandalf.readthedocs.io/], the list of edges with this
node. In amoco, edges and vertices are called links and nodes.

	Type

	list [https://docs.python.org/3/library/stdtypes.html#list][link]

	
c

	reference to the connected component that contains this
node.

	Type

	graph_core

	
view

	the block or func view object associated with our data.

	
map

	the map object associated with out data.

	Type

	mapper

	
cut(address)

	reduce the block size up to given address if data is block.

	
deg()

	returns the degree of this node (number of its links).

	
N(dir=0)

	provides a list of neighbor nodes, all if dir parameter is 0,
parent nodes if dir<0, children nodes if dir>0.

	
e_dir(dir=0)

	provides a list of links, all if dir parameter is 0,
incoming links if dir<0, outgoing links if dir>0.

	
e_in()

	a shortcut for e_dir(-1).

	
e_out()

	a shortcut for e_dir(+1).

	
e_with(v)

	provides a link to or from v. Should be used with caution: if there is
several links between current node and v this method gives the first one
listed only, independently of the direction.

	
e_to(v)

	provides the link from current node to node v.

	
e_from(v)

	provides the link to current node from node v.

	
view

	view property of the node’s code object.

	Type

	view

	
class cfg.link(x, y, w=1, data=None, connect=False)

	A directed edge between two nodes. It extends Edge
class in order to compare edges based on their data rather than id.

	Parameters

	
	x (node) – the source node.

	y (node) – the destination node.

	w (int [https://docs.python.org/3/library/functions.html#int]) – an optional weight value, default 1.

	data – a list of conditional expressions associated with the link.

	connect – a flag to indicate that a new node should be automatically
added to the connected component of its parent/child if it
is defined (default False).

	
name

	the name property returns the string composed of source and
destination node’s addresses.

	
deg

	1 if source and destination are the same node, 0 otherwise.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
v

	inherited from grandalf [https://grandalf.readthedocs.io/], the 2-tuple (source,dest)
nodes of the link.

	Type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][node]

	
feedback

	a flag indicating that this link is involved in a loop,
used internally by grandalf [https://grandalf.readthedocs.io/] layout algorithm.

	
attach()

	add current link to its node.e attribute list.

	
detach()

	remove current link from its node.e attribute list.

	
class cfg.graph(*args, **kargs)

	a <grandalf:Graph> that represents a set of functions as its
individual connected components.

	Parameters

	
	V (iterable[node]) – the set of (possibly detached) nodes.

	E (iterable[link]) – the set of links of this graph.

	
C

	the list of graph_core connected
components of the graph.

	
support

	the abstract memory zone
holding all nodes contained in this graph.

	Type

	MemoryZone

	
overlay

	defaults to None, another instance of MemoryZone
with nodes of the graph that overlap other nodes already mapped
in support.

	
get_by_name(name)

	get the node with the given name (as string).

	
get_with_address(vaddr)

	get the node that contains the given vaddr
cst expression.

	
add_vertex(v[, support=None])

	add node v to the graph and declare
node support in the default MemoryZone or the overlay zone if
provided as support argument. This method deals with a node v
that cuts or swallows a previously added node.

	
remove_vertex(v)

	remove node v from the graph.

	
add_edge(e)

	add link to the graph as well as possible new nodes.

	
remove_edge(e)

	remove the provided link.

	
get_vertices_count()

	a synonym for order().

	
V()

	generator of all nodes of the graph.

	
E()

	generator of all links of the graph.

	
N(v, f_io=0)

	returns the neighbors of node v in direction f_io.

	
path(x, y, f_io=0, hook=None)

	

	
order()

	number of nodes in the graph.

	
norm()

	number of links in the graph.

	
deg_min()

	minimum degree of nodes.

	
deg_max()

	maximum degree of nodes.

	
deg_avg()

	average degree of nodes.

	
eps()

	ratio of links over nodes (norm/order).

	
connected()

	boolean flag indicating that the graph as
only one connected component.

	
components()

	synonym for attribute C.

db.py

This module implements all amoco’s database facilities using the
sqlalchemy [http://www.sqlalchemy.org/] package, allowing to store many analysis results and
pickled objects.

	
db.createdb(url=None)

	creates the database engine and bind it to the scoped Session class.
The database URL (see config.py) is opened and the
schema is created if necessary. The default URL uses sqlite dialect and
opens a temporary file for storage.

config.py

This module defines the default amoco configuration
and loads any user-defined configuration file. It is based on the traitlets package.

	
config.conf

	holds in a Config object based on Configurable traitlets,
various parameters mostly related to how outputs should be formatted.

The defined configurable sections are:

	‘Code’ which deals with how basic blocks are printed, with options:

	‘helper’ will use codeblock helper functions to pretty print code if True (default)

	‘header’ will show a dashed header line including the address of the block if True (default)

	‘footer’ will show a dashed footer line if True

	‘segment’ will show memory section/segment name in codeblock view if True (default)

	‘bytecode’ will show the hex encoded bytecode string of every instruction if True (default)

	‘padding’ will add the specified amount of blank chars to between address/bytecode/instruction (default 4).

	‘hist’ number of instruction’s history shown in emulator view (default 3).

	‘Cas’ which deals with parameters of the algebra system:

	‘noaliasing’ will assume that mapper’s memory pointers are not aliased if True (default)

	‘complexity’ threshold for expressions (default 100). See cas.expressions for details.

	‘memtrace’ store memory writes as mapper items if True (default).

	‘unicode’ will use math unicode symbols for expressions operators if True (default False).

	‘DB’ which deals with database backend options:

	‘url’ allows to define the dialect and/or location of the database (default to sqlite)

	‘log’ indicates that database logging should be redirected to the amoco logging handlers

	‘Log’ which deals with logging options:

	‘level’ one of ‘ERROR’ (default), ‘VERBOSE’, ‘INFO’, ‘WARNING’ or ‘DEBUG’ from less to more verbose,

	‘tempfile’ to also save DEBUG logs in a temporary file if True (default is False),

	‘filename’ to also save DEBUG logs using this filename.

	‘UI’ which deals with some user-interface pretty-printing options:

	‘formatter’ one of ‘Null’ (default), ‘Terminal’, “Terminal256’, ‘TerminalDark’, ‘TerminalLight’, ‘Html’

	‘graphics’ one of ‘term’ (default), ‘qt’ or ‘gtk’

	‘console’ one of ‘python’ (default), or ‘ipython’

	‘unicode’ will use unicode symbols for drawing lines and icons if True

	‘Server’ which deals with amoco’s server parameters:

	‘wbsz’ sets the size of the server’s internal shared memory buffer with spawned commands

	‘timeout’ sets the servers’s internal timeout for the connection with spawned commands

	‘Emu’ which deals with amoco’s emulator parameters:

	‘hist’ defines the size of the emulator’s instructions’ history list (defaults to 100.)

	‘Arch’ which allows to configure assembly format parameters:

	‘assemble’ (unused)

	‘format_x86’ one of ‘Intel’ (default), ‘ATT’

	‘format_x64’ one of ‘Intel’ (default), ‘ATT’

	Type

	Config

	
class config.DB(**kwargs)

	Configurable parameters related to the database.

	
url

	defaults to sqlite:// (in-memory database).

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
log

	If True, merges database’s logs into amoco loggers.

	Type

	Bool

	
class config.Code(**kwargs)

	Configurable parameters related to assembly blocks (code.block).

	
helper

	use block helpers if True.

	Type

	Bool

	
header

	display block header dash-line with its name if True.

	Type

	Bool

	
footer

	display block footer dash-line if True.

	Type

	Bool

	
segment

	display memory section/segment name if True.

	Type

	Bool

	
bytecode

	display instructions’ bytes.

	Type

	Bool

	
padding

	add space-padding bytes to bytecode (default=4).

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
hist

	number of history instructions to show in
emulator’s code frame view.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
class config.Cas(**kwargs)

	Configurable parameters related to the Computer Algebra System (expressions).

	
complexity

	limit expressions complexity to given value. Defaults
to 10000, a relatively high value that keeps precision
but can lead to very large expressions.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
unicode

	use unicode character for expressions’ operators if True.

	Type

	Bool

	
noaliasing

	If True (default), then assume that symbolic memory
expressions (pointers) are never aliased.

	Type

	Bool

	
memtrace

	keep memory writes in mapper in addition to MemoryMap (default).

	Type

	Bool

	
class config.Log(**kwargs)

	Configurable parameters related to logging.

	
level

	terminal logging level (defaults to ‘INFO’.)

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
filename

	if not “” (default), a filename receiving VERBOSE logs.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
tempfile

	log at VERBOSE level to a temporary tmp/ file if True.

	Type

	Bool

Note

observers for Log traits are defined in the amoco.logger module
(to avoid module cyclic imports.)

	
class config.UI(**kwargs)

	Configurable parameters related to User Interface(s).

	
formatter

	pygments formatter for pretty printing. Defaults to Null,
but recommended to be set to ‘Terminal256’ if pygments
package is installed.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
graphics

	rendering backend. Currently only ‘term’ is supported.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
console

	default python console, either ‘python’ (default) or ‘ipython’.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
completekey

	client key for command completion (Tab).

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
cli

	client frontend. Currently only ‘cmdcli’ is supported.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class config.Server(**kwargs)

	Configurable parameters related to the Server mode.

	
wbsz

	size of the shared buffer between server and its command threads.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
timeout

	timeout for the servers’ command threads.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
class config.Arch(**kwargs)

	Configurable parameters related to CPU architectures.

	
assemble

	unused yet.

	Type

	Bool

	
format_x86

	select disassembly flavor: Intel (default) vs. AT&T (att).

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
format_x64

	select disassembly flavor: Intel (default) vs. AT&T (att).

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
class config.Emu(**kwargs)

	Configurable parameters related to the amoco.emu module.

	
hist

	size of the emulated instruction history list (defaults to 100.)

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
class config.System(**kwargs)

	Configurable parameters related to the system sub-package.

	
pagesize

	provides the default memory page size in bytes.

	Type

	int [https://docs.python.org/3/library/functions.html#int]

	
aslr

	simulates ASLR if True. (not supported yet.)

	Type

	Bool

	
nx

	unused.

	Type

	Bool

	
class config.Config(f=None)

	A Config instance takes an optional filename argument or
looks for .amoco/config or .amocorc files to
load a traitlets.config.PyFileConfigLoader used to adjust
UI, DB, Code, Arch, Log, Cas, System, and Server parameters.

Note

The Config object supports a print() method to display
the entire configuration.

logger.py

This module defines amoco logging facilities.
The Log class inherits from a standard logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger],
with minor additional features like a 'VERBOSE' level introduced between
'INFO' and 'DEBUG'
levels, and a progress method that can be useful for time consuming activities.
See below for details.

Most amoco modules start by creating their local logger object used to
provide various feedback.
Users can thus focus on messages from selected amoco modules by adjusting their
level independently, or use the set_quiet(), set_debug() or
set_log_all(level) functions to adjust all loggers at once.

Examples

Setting the mapper module to 'VERBOSE' level:

In [1]: import amoco
In [2]: amoco.cas.mapper.logger.setlevel('VERBOSE')

Setting all modules loggers to 'ERROR' level:

In [2]: amoco.logger.set_quiet()

Note:
All loggers can be configured to log both to stderr with selected level
and to a unique temporary file with 'DEBUG' level. See configuration.

	
class logger.Log(name, handler=<StreamHandler <stderr> (NOTSET)>)

	This class is intended to allow amoco activities to be logged
simultaneously to the stderr output with an adjusted level and to
a temporary file with full verbosity.

All instanciated Log objects are tracked by the Log class attribute
Log.loggers which maps their names with associated instances.

The recommended way to create a Log object is to add, near the begining
of amoco modules:

from amoco.logger import Log
logger = Log(__name__)

	
setLevel(lvl)

	Set the logging level of this logger. level must be an int or a str.

	
logger.set_quiet()

	set all loggers to 'ERROR' level

	
logger.set_debug()

	set all loggers to 'DEBUG' level

	
logger.set_log_all(level)

	set all loggers to specified level

	Parameters

	level (int [https://docs.python.org/3/library/functions.html#int]) – level value as an integer.

	
logger.reset_log_file(filename, level=10)

	set DEBUG log file for all loggers.

	Parameters

	filename (str [https://docs.python.org/3/library/stdtypes.html#str]) – filename for the FileHandler added
to all amoco loggers

 Python Module Index

 a |
 c |
 d |
 l |
 m |
 s

 		 	

 		
 a	

 	[image: -]
 	
 arch	

 	
 	
 arch.core	

 		 	

 		
 c	

 	[image: -]
 	
 cas	

 	
 	
 cas.expressions	

 	
 	
 cas.mapper	

 	
 	
 cas.smt	

 	
 	
 cfg	

 	
 	
 code	

 	
 	
 config	

 		 	

 		
 d	

 	
 	
 db	

 		 	

 		
 l	

 	
 	
 logger	

 		 	

 		
 m	

 	
 	
 main	

 		 	

 		
 s	

 	[image: -]
 	
 system	

 	
 	
 system.core	

 	
 	
 system.elf	

 	
 	
 system.macho	

 	
 	
 system.memory	

 	
 	
 system.pe	

 	
 	
 system.raw	

 	
 	
 system.structs	

 	
 	
 system.utils	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

_

 	
 	__map (cas.mapper.mapper attribute)

 	__Mem (cas.mapper.mapper attribute)

 	
 	_is_raw (system.memory.datadiv attribute)

 	_map (system.memory.MemoryZone attribute)

 	_zones (system.memory.MemoryMap attribute)

A

 	
 	a (cas.expressions.mem attribute)

 	add_edge() (cfg.graph method)

 	add_vertex() (cfg.graph method)

 	address (arch.core.instruction attribute)

 	(code.block attribute)

 	addtomap() (system.memory.MemoryZone method)

 	aliasing() (cas.mapper.mapper method)

 	Arch (class in config)

 	arch.core (module)

 	archs (system.macho.MachO attribute)

 	
 	aslr (config.System attribute)

 	assemble (config.Arch attribute)

 	assume() (cas.mapper.mapper method)

 	attach() (cfg.link method)

 	AttributeCertificate (class in system.pe)

 	Aux_bf_ef (class in system.pe)

 	AuxFile (class in system.pe)

 	AuxFunctionDefinition (class in system.pe)

 	AuxSectionDefinition (class in system.pe)

 	AuxSymbolRecord (class in system.pe)

 	AuxWeakExternal (class in system.pe)

B

 	
 	base (cas.expressions.ptr attribute)

 	basemap (system.elf.Elf attribute)

 	(system.macho.MachO attribute)

 	(system.pe.PE attribute)

 	bin (system.core.CoreExec attribute)

 	BinFormat (class in system.core)

 	
 	bit() (cas.expressions.exp method)

 	block (class in code)

 	blocks (code.func attribute), [1]

 	bytecode (config.Code attribute)

 	bytes (arch.core.icore attribute)

 	bytes() (cas.expressions.exp method)

 	(cas.expressions.mem method)

C

 	
 	C (cfg.graph attribute)

 	c (cfg.node attribute)

 	call() (cas.expressions.ext method)

 	Cas (class in config)

 	cas.expressions (module)

 	cas.mapper (module)

 	cas.smt (module)

 	cast_z3_bool() (in module cas.smt)

 	cast_z3_bv() (in module cas.smt)

 	cfg (code.func attribute)

 	(module)

 	cfp (class in cas.expressions)

 	cfp_to_z3() (in module cas.smt)

 	checksec() (system.elf.Elf method)

 	(system.macho.MachO method)

 	clear() (cas.mapper.mapper method)

 	cli (config.UI attribute)

 	cmds (system.macho.MachO attribute)

 	CntField (class in system.structs)

 	Code (class in config)

 	code (module)

 	COFFHdr (class in system.pe)

 	COFFLineNumber (class in system.pe)

 	COFFRelocation (class in system.pe)

 	comment (system.structs.Field attribute)

 	
 	comp (class in cas.expressions)

 	comp_to_z3() (in module cas.smt)

 	completekey (config.UI attribute)

 	complexity (config.Cas attribute)

 	complexity() (in module cas.expressions)

 	components() (cfg.graph method)

 	composer() (in module cas.expressions)

 	conds (cas.mapper.mapper attribute), [1]

 	conf (in module config)

 	Config (class in config)

 	config (module)

 	connected() (cfg.graph method)

 	console (config.UI attribute)

 	Consts (class in system.structs)

 	CoreExec (class in system.core)

 	count (system.structs.Field attribute)

 	cpu (system.core.CoreExec attribute)

 	createdb() (in module db)

 	csi (cas.mapper.mapper attribute), [1]

 	cst (class in cas.expressions)

 	cst_to_z3() (in module cas.smt)

 	cut() (cas.expressions.comp method)

 	(cfg.node method)

 	(code.block method)

 	(system.memory.datadiv method)

D

 	
 	data (cfg.node attribute)

 	(system.memory.mo attribute)

 	(system.pe.PE attribute)

 	data() (system.elf.Elf method)

 	(system.macho.MachO method)

 	DataDirectory (class in system.pe)

 	datadiv (class in system.memory)

 	DataIO (class in system.core)

 	DB (class in config)

 	db (module)

 	DecodeError

 	DefineLoader (class in system.core)

 	DefineStub (class in system.core)

 	deg (cfg.link attribute)

 	deg() (cfg.node method)

 	deg_avg() (cfg.graph method)

 	deg_max() (cfg.graph method)

 	deg_min() (cfg.graph method)

 	delayed() (cas.mapper.mapper method)

 	
 	DelayLoadDirectoryTable (class in system.pe)

 	depth() (cas.expressions.comp method)

 	(cas.expressions.exp method)

 	(cas.expressions.op method)

 	(cas.expressions.slc method)

 	(cas.expressions.top method)

 	(cas.expressions.tst method)

 	(cas.expressions.uop method)

 	(cas.expressions.vec method)

 	detach() (cfg.link method)

 	disassembler (class in arch.core)

 	disp (cas.expressions.ptr attribute)

 	DOS (system.pe.PE attribute)

 	DOSHdr (class in system.pe)

 	dumps() (cas.expressions.exp method)

 	dyld_info (system.macho.MachO attribute)

 	Dyn (class in system.elf)

 	dynamic (system.elf.Elf attribute)

 	(system.macho.MachO attribute)

 	dysymtab (system.macho.MachO attribute)

E

 	
 	e (cfg.node attribute)

 	E() (cfg.graph method)

 	e_dir() (cfg.node method)

 	e_from() (cfg.node method)

 	e_in() (cfg.node method)

 	e_out() (cfg.node method)

 	e_to() (cfg.node method)

 	e_with() (cfg.node method)

 	Ehdr (class in system.elf)

 	(system.elf.Elf attribute)

 	Elf (class in system.elf)

 	ElfError

 	Emu (class in config)

 	endian (arch.core.disassembler attribute)

 	(cas.expressions.mem attribute)

 	entrypoints (system.elf.Elf attribute)

 	(system.macho.MachO attribute)

 	(system.pe.PE attribute)

 	eps() (cfg.graph method)

 	eqn1_helpers() (in module cas.expressions)

 	eqn2_helpers() (in module cas.expressions)

 	
 	etype (cas.expressions.reg attribute)

 	(cas.expressions.slc attribute)

 	eval() (cas.expressions.cfp method)

 	(cas.expressions.comp method)

 	(cas.expressions.cst method)

 	(cas.expressions.exp method)

 	(cas.expressions.mem method)

 	(cas.expressions.op method)

 	(cas.expressions.ptr method)

 	(cas.expressions.reg method)

 	(cas.expressions.slc method)

 	(cas.expressions.tst method)

 	(cas.expressions.uop method)

 	(cas.expressions.vec method)

 	(cas.expressions.vecw method)

 	(cas.mapper.mapper method)

 	exp (class in cas.expressions)

 	ExportTable (class in system.pe)

 	ext (class in cas.expressions)

 	extend() (cas.expressions.exp method)

 	extract_offset() (in module cas.expressions)

F

 	
 	fargs (arch.core.ispec attribute)

 	feedback (cfg.link attribute)

 	Field (class in system.structs)

 	filename (config.Log attribute)

 	(system.elf.Elf attribute)

 	(system.macho.MachO attribute)

 	(system.pe.PE attribute)

 	fix (arch.core.ispec attribute)

 	footer (config.Code attribute)

 	format (arch.core.ispec attribute)

 	format() (system.structs.CntField method)

 	(system.structs.Field method), [1]

 	(system.structs.RawField method)

 	(system.structs.VarField method)

 	
 	format_x64 (config.Arch attribute)

 	format_x86 (config.Arch attribute)

 	FormatError

 	Formatter (class in arch.core)

 	formatter (config.UI attribute)

 	formatter() (arch.core.instruction static method)

 	func (class in code)

 	function_starts (system.macho.MachO attribute)

 	functions (system.elf.Elf attribute)

 	(system.pe.PE attribute)

G

 	
 	generation() (cas.mapper.mapper method)

 	get() (system.structs.Field method)

 	get_by_name() (cfg.graph method)

 	get_int16() (system.core.CoreExec method)

 	get_int32() (system.core.CoreExec method)

 	get_int64() (system.core.CoreExec method)

 	get_int8() (system.core.CoreExec method)

 	get_uint16() (system.core.CoreExec method)

 	get_uint32() (system.core.CoreExec method)

 	get_uint64() (system.core.CoreExec method)

 	get_uint8() (system.core.CoreExec method)

 	get_vertices_count() (cfg.graph method)

 	get_with_address() (cfg.graph method)

 	getdata() (system.pe.PE method)

 	getfileoffset() (system.elf.Elf method)

 	(system.macho.MachO method)

 	(system.pe.PE method)

 	
 	getinfo() (system.elf.Elf method)

 	(system.macho.MachO method)

 	getmemory() (cas.mapper.mapper method)

 	getpart() (system.memory.datadiv method)

 	getsection() (system.macho.MachO method)

 	getsize() (system.elf.Elf method)

 	(system.macho.MachO method)

 	getx() (system.core.CoreExec method)

 	geu() (in module cas.expressions)

 	graph (class in cfg)

 	graphics (config.UI attribute)

 	grep() (system.memory.MemoryMap method)

 	(system.memory.MemoryZone method)

H

 	
 	has() (cas.mapper.mapper method)

 	header (config.Code attribute)

 	(system.macho.MachO attribute)

 	helper (config.Code attribute)

 	
 	HEX (class in system.utils)

 	hist (config.Code attribute)

 	(config.Emu attribute)

 	history() (cas.mapper.mapper method)

 	hook (arch.core.ispec attribute)

I

 	
 	iattr (arch.core.ispec attribute)

 	icore (class in arch.core)

 	IDENT (class in system.elf)

 	ImportTableEntry (class in system.pe)

 	inputs() (cas.mapper.mapper method)

 	
 	instr (code.block attribute)

 	instruction (class in arch.core)

 	InstructionError

 	interact() (cas.mapper.mapper method)

 	iset (arch.core.disassembler attribute)

 	ispec (class in arch.core)

L

 	
 	l (cas.expressions.op attribute)

 	(cas.expressions.tst attribute)

 	(cas.expressions.uop attribute)

 	la_symbol_ptr (system.macho.MachO attribute)

 	lab (class in cas.expressions)

 	lc_str (class in system.macho)

 	length (arch.core.icore attribute)

 	(cas.expressions.exp attribute)

 	(code.block attribute)

 	level (config.Log attribute)

 	Lib (class in system.elf)

 	link (class in cfg)

 	list() (code.tag class method)

 	load_program() (in module system.core)

 	
 	LoadConfigTable (class in system.pe)

 	loads() (cas.expressions.exp method)

 	loadsegment() (system.elf.Elf method)

 	(system.macho.MachO method)

 	(system.pe.PE method)

 	locate() (system.memory.MemoryMap method)

 	(system.memory.MemoryZone method)

 	(system.pe.PE method)

 	locations_of() (in module cas.expressions)

 	Log (class in config)

 	(class in logger)

 	log (config.DB attribute)

 	logger (module)

 	ltu() (in module cas.expressions)

M

 	
 	M() (cas.mapper.mapper method)

 	MachO (class in system.macho)

 	MachOError

 	MachoFormatter (class in system.macho)

 	main (module)

 	map (cfg.node attribute)

 	mapper (class in cas.mapper)

 	mask (arch.core.ispec attribute)

 	(cas.expressions.exp attribute)

 	maxlen (arch.core.disassembler attribute)

 	mem (class in cas.expressions)

 	mem_to_z3() (in module cas.smt)

 	
 	MemoryMap (class in system.memory)

 	MemoryZone (class in system.memory)

 	memtrace (config.Cas attribute)

 	merge() (in module cas.mapper)

 	(system.memory.MemoryMap method)

 	mergeparts() (in module system.memory)

 	misc (arch.core.icore attribute)

 	mmap (cas.mapper.mapper attribute)

 	mnemonic (arch.core.icore attribute)

 	mo (class in system.memory)

 	model_to_mapper() (in module cas.smt)

 	mods (cas.expressions.mem attribute)

N

 	
 	N() (cfg.graph method)

 	(cfg.node method)

 	name (cfg.link attribute)

 	(system.structs.Field attribute)

 	newvar() (in module cas.smt)

 	newzone() (system.memory.MemoryMap method)

 	
 	nl_symbol_ptr (system.macho.MachO attribute)

 	noaliasing (config.Cas attribute)

 	node (class in cfg)

 	norm() (cfg.graph method)

 	Note (class in system.elf)

 	NT (system.pe.PE attribute)

 	nx (config.System attribute)

O

 	
 	op (cas.expressions.op attribute)

 	(cas.expressions.uop attribute)

 	(class in cas.expressions)

 	op_to_z3() (in module cas.smt)

 	oper() (in module cas.expressions)

 	operands (arch.core.icore attribute)

 	
 	Opt (system.pe.PE attribute)

 	OptionalHdr (class in system.pe)

 	order (system.structs.Field attribute)

 	order() (cfg.graph method)

 	OS (system.core.CoreExec attribute)

 	outputs() (cas.mapper.mapper method)

 	overlay (cfg.graph attribute)

P

 	
 	pack() (system.structs.Field method)

 	padding (config.Code attribute)

 	pagesize (config.System attribute)

 	parts (cas.expressions.comp attribute)

 	path() (cfg.graph method)

 	PE (class in system.pe)

 	PEError

 	Phdr (class in system.elf)

 	(system.elf.Elf attribute)

 	
 	pos (cas.expressions.slc attribute)

 	pp() (cas.expressions.exp method)

 	precond (arch.core.ispec attribute)

 	prop (cas.expressions.op attribute)

 	(cas.expressions.uop attribute)

 	ptr (class in cas.expressions)

 	ptr_to_z3() (in module cas.smt)

R

 	
 	r (cas.expressions.op attribute)

 	(cas.expressions.tst attribute)

 	(cas.expressions.uop attribute)

 	R() (cas.mapper.mapper method)

 	range() (system.memory.MemoryZone method)

 	raw() (cas.expressions.slc method)

 	(code.block method)

 	RawExec (class in system.raw)

 	RawField (class in system.structs)

 	rcompose() (cas.mapper.mapper method)

 	read() (system.memory.MemoryMap method)

 	(system.memory.MemoryZone method)

 	(system.memory.mo method)

 	read_commands() (system.macho.MachO method)

 	read_data() (system.core.CoreExec method)

 	read_fat_arch() (system.macho.MachO method)

 	read_instruction() (system.core.CoreExec method)

 	read_program() (in module system.core)

 	readsection() (system.elf.Elf method)

 	(system.macho.MachO method)

 	
 	readsegment() (system.elf.Elf method)

 	(system.macho.MachO method)

 	ref (cas.expressions.slc attribute)

 	reference() (system.memory.MemoryMap method)

 	reg (class in cas.expressions)

 	reg_to_z3() (in module cas.smt)

 	regtype (class in cas.expressions)

 	Rel (class in system.elf)

 	rel (system.memory.MemoryZone attribute)

 	Rela (class in system.elf)

 	remove_edge() (cfg.graph method)

 	remove_vertex() (cfg.graph method)

 	reset_log_file() (in module logger)

 	restruct() (cas.expressions.comp method)

 	(cas.mapper.mapper method)

 	(system.memory.MemoryMap method)

 	(system.memory.MemoryZone method)

 	rol() (in module cas.expressions)

 	ror() (in module cas.expressions)

 	rw() (cas.mapper.mapper method)

S

 	
 	safe_update() (cas.mapper.mapper method)

 	SectionHdr (class in system.pe)

 	sections (system.pe.PE attribute)

 	seg (cas.expressions.ptr attribute)

 	segment (config.Code attribute)

 	Server (class in config)

 	set_debug() (in module logger)

 	set_formatter() (arch.core.instruction class method)

 	set_log_all() (in module logger)

 	set_quiet() (in module logger)

 	set_uarch() (arch.core.icore class method)

 	setlen() (system.memory.datadiv method)

 	setLevel() (logger.Log method)

 	setmemory() (cas.mapper.mapper method)

 	setpart() (system.memory.datadiv method)

 	setup() (arch.core.disassembler method)

 	setx() (system.core.CoreExec method)

 	sf (cas.expressions.exp attribute)

 	SFLG (class in system.macho)

 	Shdr (class in system.elf)

 	(system.elf.Elf attribute)

 	shift() (system.memory.MemoryZone method)

 	sig() (code.tag class method)

 	signed() (cas.expressions.exp method)

 	signextend() (cas.expressions.cst method)

 	(cas.expressions.exp method)

 	simplify() (cas.expressions.comp method)

 	(cas.expressions.exp method)

 	(cas.expressions.mem method)

 	(cas.expressions.op method)

 	(cas.expressions.ptr method)

 	(cas.expressions.slc method)

 	(cas.expressions.tst method)

 	(cas.expressions.uop method)

 	(cas.expressions.vec method)

 	size (arch.core.ispec attribute)

 	(cas.expressions.exp attribute)

 	size() (system.structs.Field method)

 	slc (class in cas.expressions)

 	slc_to_z3() (in module cas.smt)

 	slicer() (in module cas.expressions)

 	smask (cas.expressions.comp attribute)

 	spec (arch.core.icore attribute)

 	specs (arch.core.disassembler attribute)

 	SREC (class in system.utils)

 	state (system.core.CoreExec attribute)

 	StdSymbolRecord (class in system.pe)

 	struct_arm_thread_state32 (class in system.macho)

 	struct_arm_thread_state64 (class in system.macho)

 	struct_build_tool_version (class in system.macho)

 	struct_build_version_command (class in system.macho)

 	struct_data_in_code_entry (class in system.macho)

 	struct_dyld_info_command (class in system.macho)

 	struct_dylib (class in system.macho)

 	struct_dylib_command (class in system.macho)

 	struct_dylib_module (class in system.macho)

 	struct_dylib_module_64 (class in system.macho)

 	struct_dylib_reference (class in system.macho)

 	struct_dylib_table_of_contents (class in system.macho)

 	struct_dylinker_command (class in system.macho)

 	struct_dysymtab_command (class in system.macho)

 	
 	struct_encryption_info_command (class in system.macho)

 	struct_entry_point_command (class in system.macho)

 	struct_fat_arch (class in system.macho)

 	struct_fat_header (class in system.macho)

 	struct_fvmfile_command (class in system.macho)

 	struct_fvmlib (class in system.macho)

 	struct_fvmlib_command (class in system.macho)

 	struct_ident_command (class in system.macho)

 	struct_indirect_entry (class in system.macho)

 	struct_linkedit_data_command (class in system.macho)

 	struct_load_command (class in system.macho)

 	struct_mach_header (class in system.macho)

 	struct_mach_header_64 (class in system.macho)

 	struct_nlist (class in system.macho)

 	struct_nlist64 (class in system.macho)

 	struct_note_command (class in system.macho)

 	struct_prebind_cksum_command (class in system.macho)

 	struct_prebound_dylib_command (class in system.macho)

 	struct_relocation_info (class in system.macho)

 	struct_routines_command (class in system.macho)

 	struct_routines_command_64 (class in system.macho)

 	struct_rpath_command (class in system.macho)

 	struct_section (class in system.macho)

 	struct_section_64 (class in system.macho)

 	struct_segment_command (class in system.macho)

 	struct_segment_command_64 (class in system.macho)

 	struct_source_version_command (class in system.macho)

 	struct_sub_client_command (class in system.macho)

 	struct_sub_framework_command (class in system.macho)

 	struct_sub_library_command (class in system.macho)

 	struct_sub_umbrella_command (class in system.macho)

 	struct_symseg_command (class in system.macho)

 	struct_symtab_command (class in system.macho)

 	struct_thread_command (class in system.macho)

 	struct_twolevel_hints_command (class in system.macho)

 	struct_uuid_command (class in system.macho)

 	struct_version_min_command (class in system.macho)

 	struct_x86_thread_state32 (class in system.macho)

 	struct_x86_thread_state64 (class in system.macho)

 	StructCore (class in system.structs)

 	StructDefine (class in system.structs)

 	StructFactory() (in module system.structs)

 	StructFormatter (class in system.structs)

 	StructMaker (class in system.structs)

 	StructureError

 	support (cfg.graph attribute)

 	(code.block attribute)

 	(code.func attribute)

 	sym (class in cas.expressions)

 	Sym (class in system.elf)

 	symbols_of() (in module cas.expressions)

 	symtab (system.macho.MachO attribute)

 	System (class in config)

 	system.core (module)

 	system.elf (module)

 	system.macho (module)

 	system.memory (module)

 	system.pe (module)

 	system.raw (module)

 	system.structs (module)

 	system.utils (module)

T

 	
 	tag (class in code)

 	tempfile (config.Log attribute)

 	timeout (config.Server attribute)

 	tls (system.pe.PE attribute)

 	TLSTable (class in system.pe)

 	to_smtlib() (cas.expressions.exp method)

 	(in module cas.smt)

 	to_sym() (cas.expressions.cst method)

 	token_address_fmt() (in module system.structs)

 	token_constant_fmt() (in module system.structs)

 	token_datetime_fmt() (in module system.structs)

 	token_default_fmt() (in module system.structs)

 	token_flag_fmt() (in module system.structs)

 	token_mask_fmt() (in module system.structs)

 	token_name_fmt() (in module system.structs)

 	toks() (arch.core.instruction method)

 	(cas.expressions.cfp method)

 	(cas.expressions.comp method)

 	(cas.expressions.cst method)

 	(cas.expressions.exp method)

 	(cas.expressions.ext method)

 	(cas.expressions.mem method)

 	(cas.expressions.op method)

 	(cas.expressions.ptr method)

 	(cas.expressions.reg method)

 	(cas.expressions.slc method)

 	(cas.expressions.tst method)

 	(cas.expressions.uop method)

 	(cas.expressions.vec method)

 	(cas.expressions.vecw method)

 	
 	top (class in cas.expressions)

 	top_to_z3() (in module cas.smt)

 	trim() (system.memory.mo method)

 	tst (cas.expressions.tst attribute)

 	(class in cas.expressions)

 	tst_to_z3() (in module cas.smt)

 	twolevel_hint (class in system.macho)

 	type (arch.core.icore attribute)

 	(system.structs.Field attribute)

 	typename (system.structs.Field attribute)

 	typename() (arch.core.icore method)

U

 	
 	UI (class in config)

 	unicode (config.Cas attribute)

 	UnionDefine (class in system.structs)

 	UnionFactory() (in module system.structs)

 	unpack() (system.structs.CntField method)

 	(system.structs.Field method), [1]

 	(system.structs.RawField method)

 	(system.structs.VarField method)

 	
 	unsigned() (cas.expressions.exp method)

 	uop (class in cas.expressions)

 	uop_to_z3() (in module cas.smt)

 	update() (cas.mapper.mapper method)

 	update_delayed() (cas.mapper.mapper method)

 	url (config.DB attribute)

 	use() (cas.mapper.mapper method)

 	usemmap() (cas.mapper.mapper method)

V

 	
 	v (cfg.link attribute)

 	V() (cfg.graph method)

 	vaddr (system.memory.mo attribute)

 	val (system.memory.datadiv attribute)

 	value (cas.expressions.cst attribute)

 	VarField (class in system.structs)

 	variables (system.elf.Elf attribute)

 	(system.pe.PE attribute)

 	
 	vec (class in cas.expressions)

 	vec_to_z3() (in module cas.smt)

 	vecw (class in cas.expressions)

 	view (cas.mapper.mapper attribute)

 	(cfg.node attribute), [1]

 	(code.block attribute)

W

 	
 	wbsz (config.Server attribute)

 	write() (system.memory.MemoryMap method)

 	(system.memory.MemoryZone method)

 	(system.memory.mo method)

X

 	
 	x (cas.expressions.slc attribute)

Z

 	
 	zeroextend() (cas.expressions.cst method)

 	(cas.expressions.exp method)

main.py

The main module of amoco.

 _static/plus.png

_static/up-pressed.png

_static/up.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Amoco documentation

 		
 Installation

 		
 Getting started

 		
 Loading binary data

 		
 Decoding blocks of instructions

 		
 Symbolic representations of blocks

 		
 Starting some analysis

 		
 Examples

 		
 Configuration

 		
 Advanced features

 		
 Overview

 		
 The architecture package

 		
 Adding support for a new cpu module

 		
 The cpu environment

 		
 Instructions specifications

 		
 The cpu disassembler

 		
 Instructions semantics

 		
 Instructions format

 		
 The cpu module

 		
 The computer algebra system package

 		
 cas/expressions.py

 		
 cas/smt.py

 		
 cas/mapper.py

 		
 The system package

 		
 system/core.py

 		
 system/memory.py

 		
 system/structs.py

 		
 system/elf.py

 		
 system/pe.py

 		
 system/macho.py

 		
 system/utils.py

 		
 The static analysis package

 		
 The user interface package

 		
 code.py

 		
 cfg.py

 		
 db.py

 		
 config.py

 		
 logger.py

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

